Outstanding Questions for the Standard Cosmological Model Imperial College, London

MISSING THERMAL ENERGY OF THE UNIVERSE

Niayesh Afshordi Institute for Theory and Computation Harvard College Observatory

My Collaborators

Yen-Ting Lin
Princeton/Catolica
Daisuke Nagai
CalTech
Alastair Sanderson
University of Birmingham

Afshordi, Lin, & Sanderson 2005 (1st yr) Afshordi, Lin, Nagai, & Sanderson 2007(3 yrs)

My idea of public talks in London, prior to today

Galaxy Clusters: Conventional Wisdom

- Largest "relaxed objects" in the Universe
- Contain ~10% of the baryons/dark matter in the Universe
- Most of the cluster baryons are in a shock-heated plasma (107-108 K;1-10 keV)
- → This plasma contains most of the thermal energy of the Universe
- Representative sample of cosmic baryonic budget

Galaxy Cluster Abell 2218

Millennium Simulation Springel et al. 2005

Sunyaev-Zel'dovich (SZ) effect

- Scattering of CMB photons off hot electrons in the Intracluster medium
- Probes the thermal energy distribution of electrons in the Intra-Cluster Medium: $\delta T_{SZ}(\hat{\mathbf{n}}) \propto \int dr P_e(r\hat{\mathbf{n}})$
- SZ flux is redshift independent
- Positive (negative) at large (small) frequencies

Imperial College, London

SZ Cluster Surveys

- SZ clusters can be detected up to high redshifts
- Their number counts probe Dark Energy/Cosmology
- Many SZ surveys are underway: APEX, SZA, ACT, SPT, Planck, ...
- Can they deliver?
 Calibration of SZ-Mass relation, Gastrophysics, ...

Courtesy of John Carlstrom Imperial College, London

SZ effect in WMAP

(just to get a head start)

WMAP SZ clusters ...

Three close-by clusters in the WMAP3 map

Missing Thermal Energy of the Universe

Imperial College, London

Model-independent reconstruction of pressure profile

(Afshordi, Lin, Nagai, & Sanderson 2007, MNRAS in press)

- WMAP 3-yr maps
 - Q,V,W (41-92 GHz)
 - $N_{res} = 9$ (pixel size \simeq 0.1 deg)
- 260 clusters
 - measured X-ray temperature

$$r_{200} = (1.16 \text{ Mpc}) \left(\frac{H(z)}{100 \text{ km/s/Mpc}} \right)^{-1} \left(\frac{T_X}{5 \text{ keV}} \right)^{1/2}$$

Universal Pressure Profile

- ρ_{DM}/ρ_{crit}
- __ Hydro-Simulations
- WMAP 1- σ region ($P_{gas}>0$)
- WMAP best fit
 - First direct
 measurement of ICM
 pressure profile
 - 2. Excellent agreement between simulations and observations

Missing Thermal Energy of the Intracluster Medium

- WMAP 1- σ region (P_{gas}>0)
- WMAP best fit
- X-ray and SZ observations are both missing ~35% of baryons
- Simulations also lose the same fraction into cold gas

Imperial College, London

35 ± 8% of Baryons are missing from the Intracluster Medium!

- Where are the rest of baryons?
 - stars are < 10%</p>
 - intracluster stars (only 2-3%)
 - warm gas: 10⁵-10⁶ K (soft X-ray excess: but why doesn't it cool?; c.f. talk by Kaastra)
 - cold starless clouds (c.f. talk by Combes)
 - thermal evaporation from the cluster (Loeb o6: but this is suppressed by B-field: Medvedev o7)

Is there a discrepancy between X-ray and SZ?

Lieu, Mittaz, & Zhang 2006
 and Bielby & Shanks 2007
 find that β-model fits to X-ray
 cluster observations
 overpredict WMAP SZ signal
 by many σ's

 We find that X-ray and SZ gas fractions are systematically low but consistent

Isothermal β -model overpredicts gas pressure in cluster outskirts

cluster Abell 133

...... β-model (Lieu et al. o6) 3+1 parameters (brightness+temp) _____(Vikhlinin et al. o6) 9+9 parameters (brightness+temp)

Fundamental Plane of SZ clusters

(Afshordi 2007, in preparation)

- 10% systematic error in mass is required for reliable cosmology (Francis, Bean & Kosowksy 05)
- Using SZ half-light radius can decrease the error in mass estimates by 30%

Conclusions

- SZ clusters are sensitive probes of cosmology
- First direct measurement of cluster pressure profile
- → ~Mystery: 30-40% of cluster gas is missing!
- X-ray and SZ are consistent, but beware of extrapolations that may fail (e.g. β-model)