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We explore use of the harmonic Einstein equations to numerically find stationary black holes
where the problem is posed on an ingoing slice that extends into the interior of the black hole.
Requiring no boundary conditions at the horizon beyond smoothness of the metric, this method
may be applied for horizons that are not Killing. As a non-trivial illustration we find black holes
which, via AdS-CFT, describe a time-independent CFT plasma flowing through a static spacetime
which asymptotes to Minkowski in the flow’s past and future, with a varying spatial geometry
in-between. These are the first non-perturbative examples of stationary black holes which do not
have Killing horizons. When the CFT spacetime slowly varies, the CFT stress tensor derived from
gravity is well described by viscous hydrodynamics. For fast variation it is not, and the solutions are
stationary analogs of dynamical quenches, with the plasma being suddenly driven out of equilibrium.
We find evidence these flows become unstable for sufficiently strong quenches, and speculate the
instability may be turbulent.

Due to the remarkable Anti de Sitter-Conformal Field
Theory (AdS-CFT) correspondence [1–3], the behaviour
of black holes in asymptotically AdS spacetimes is equiv-
alent to the behaviour of hot plasma in certain strongly
coupled CFTs. Since these black holes may have planar
horizons they admit arbitrarily long wavelength pertur-
bations which give rise to the hydrodynamic behaviour
expected of the CFT plasma [4–8]. Perturbations on
short scales correspond to microscopic plasma behaviour
beyond hydrodynamics. As this currently cannot be com-
puted directly in strongly coupled CFTs, gravity pro-
vides an entirely new computational tool, as reviewed in
[9–11]. This has been exploited for dynamical quenches
where the CFT is abruptly perturbed [12–16] and the
dual spacetime is found by numerical methods [17–23].

Here we study an analog of a dynamical quench, where
the CFT state is time independent. We consider station-
ary black holes dual to a time independent relativistic
plasma flow through a static spacetime. This asymp-
totes to Minkowski in the flow’s past and future, but
in-between the spatial geometry varies in the flow direc-
tion. The flow, initially in equilibrium, is forced out of
equilibrium in response to passing through the curved
spacetime region, before returning to equilibrium after-
wards. For slowly varying spacetimes (with respect to
the length scale set by the local temperature) such flows
are well described by hydrodynamics [24]. For quick vari-
ation they probe behaviour beyond hydrodynamics, and
are stationary analogs to dynamical quenches.

These black holes are of a qualitatively new variety,
being the first non-perturbative examples of stationary
black holes that do not have Killing horizons, and hence
do not move rigidly [25]. The rigidity theorem states
that if a stationary horizon is compact, it is also Killing
[26–28]. Our black holes have non-compact horizons and
evade this theorem, and since the dual plasma flows in

a direction which is not a symmetry, these horizons are
not Killing. Other stationary non-Killing horizons have
been considered in the AdS-CFT context; ‘flowing fun-
nels’ [29] where so far only related solutions with Killing
horizons have been found [30–32], and ‘plasma shocks’
[33, 34] where non-Killing horizons have been found in a
perturbative limit, but are expect to exist beyond this.

Harmonic Einstein equations.— Consider a Lorentzian
stationary solution to the Einstein equations where the
stationary Killing vector field T is globally timelike. We
consider the purely gravitational case Rµν = Λgµν , al-
though generalisation to include matter is straightfor-
ward. We adapt coordinates, xµ = (t, xi), so T = ∂/∂t
and the metric gµν is,

ds2 = −N(x)(dt+Ai(x)dxi)2 + bij(x)dxidxj . (1)

The spacetime is Lorentzian so det gµν = −N det bij < 0,
and T is globally timelike so N(x) > 0 and thus bij(x) is a
Riemannian metric. In order to obtain a well posed prob-
lem we must eliminate the coordinate invariance. Instead
of solving the Einstein equations, we solve ‘harmonic’ or
‘DeTurck’ Einstein equations [35, 36] as reviewed in [37],

RHµν ≡ Rµν −∇(µξν) = Λgµν (2)

where, ξµ = gαβ
(

Γµ αβ − Γ̄µ αβ

)
is constructed from a

fixed reference connection Γ̄µ αβ on the manifold, which
here we take to be the connection of a reference metric
ḡµν . The two derivative part of these equations is gov-
erned by the operator bij∂i∂j , and since bij is a Rieman-
nian metric the harmonic Einstein equation is elliptic.

For suitable boundary conditions the whole system
may be solved as a standard elliptic boundary value prob-
lem. We want solutions with ξµ = 0, which is a coordi-
nate gauge condition analogous to generalised harmonic
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gauge in dynamical numerical GR [38], and must ensure
our boundary conditions are compatible with this. In cer-
tain cases one may prove ξµ must vanish [30]. In general,
‘soliton’ solutions with ξµ 6= 0 may exist. However for an
elliptic problem solutions are locally unique, and hence
one may easily distinguish whether a solution found has
vanishing ξµ or not. The system may be solved by relax-
ation which is related to Ricci flow. Alternatively after
discretization it can be solved by the Newton method
given an initial guess.

Old method for Killing horizons.— For a stationary black
hole T = ∂/∂t is not globally timelike, being spacelike in-
side the horizon, or outside if an ergoregion exists. Hence
bij must become Lorentzian, and the problem inside the
horizon and ergoregion naively appears hyperbolic.

A previous method [36] focussed on retaining ellipticity
by assuming a Killing horizon that rigidly moves. We
assume Killing vectors Ra = ∂/∂ya exist which commute
with themselves and T . For constants Ωa we take K =
T+ΩaRa to generate the Killing horizon and rigid motion
of the spacetime. The metric can then be written as,

ds2 = GAB(x)(dyA +AAa (x)dxa)(dyB +ABb (x)dxb)

+bab(x)dxadxb (3)

with yA = (t, ya). Now GAB is Lorentzian outside the
horizon (even in an ergoregion), and degenerates at the
horizon or axes of symmetry of the Ra. Correspondingly
bab(x) can be chosen to be Riemannian on, and in the
exterior of, the horizon. These coordinates yield a slice
of the spacetime that intersects the bifurcation surface
of the Killing horizon. Since the principle part of RH is
governed by bab∂a∂b the p.d.e. system is elliptic posed on
the base geometry with coordinates xa - the ‘orbit space’.
The boundaries of this base are where GAB degenerates
and smoothness determines boundary conditions there
[36, 39, 40]. The surface gravity κ and (angular) veloci-
ties of the horizon Ωa are prescribed in these boundary
conditions. For regularity the reference metric must also
have a Killing horizon at the same location with the same
κ and Ωa. Hence we may think of the reference metric
as specifying these moduli of the solution.

New method for non-Killing horizons.— Suppose we are
interested in stationary black holes that do not have a
Killing horizon. For a non-Killing horizon we cannot as-
sume existence of a bifurcation surface and regular past
horizon. In the new approach we now describe we no
longer require the problem to be elliptic. We take the
general stationary ansatz (1) and pose the harmonic Ein-
stein equations on an ingoing slice (analogous to that of
Eddington-Finklestein) that intersects the future horizon
and extends into the black hole interior. For the metric
(1) in ingoing coordinates gµν is regular at the future
horizon, so det gµν = −N det bij < 0 on the future hori-
zon and its exterior. Thus bij is elliptic in the exterior

of the horizon or ergoregion (ie. where N > 0) and is
hyperbolic inside these (where N < 0). Such a problem
is analogous to mixed hyperbolic elliptic p.d.e.s in fluid
dynamics. Whilst the problem will have hyperbolic char-
acter inside the horizon and ergoregion we may still solve
it using the Newton method as before. Interestingly the
Ricci flow method appears also to work, but we will not
explore that here. The components of ξµ = 0 give gauge
conditions; ξi are associated to xi coordinate freedom
and ξt to the freedom t→ t+ f(xi).

An important difference to the old method is that since
the problem is hyperbolic in the interior of the horizon,
at the innermost points of our domain we impose only
the harmonic Einstein equations and no boundary con-
dition. The requirement that the metric is smooth in our
domain is sufficient to ensure regularity of the horizon
in ingoing coordinates. Starting from a smooth initial
guess near a solution, then the Ricci flow and Newton
method will preserve smoothness, since both update the
metric using the harmonic Ricci tensor which will also be
smooth. We implicitly assume the physically reasonable
statement that asymptotic boundary conditions together
with future horizon regularity define a locally unique sta-
tionary black hole solution, up to moduli of the solution
(such as mass). This is true for Killing horizons as can
be seen from the elliptic nature of the p.d.e.s discussed
earlier. Indeed the black hole uniqueness theorems show
in many cases global uniqueness. For stationary non-
Killing horizons we assume local uniqueness here, but
emphasise we know of no proof. We note this is the basis
of the fluid/gravity correspondence [7, 8]. It is the hori-
zon rather than the ergosurface where smoothness must
be imposed, even though the ergosurface determines the
transition of character of the p.d.e.s. This is analogous to
a stationary scalar field in the Kerr background, where
one explicitly sees the scalar equation has regular singu-
lar behaviour at the horizon, and hence it is smoothness
there that constrains the solutions [41].

A second key difference with the old method is that
the reference metric, while selecting the coordinate sys-
tem, no longer specifies the surface gravity or velocities
of the horizon. These moduli must be fixed by appro-
priate boundary conditions. Indeed the horizons of the
solution and reference metric in general do not coincide.

We provide a simple toy example in the Supplemental
Material which implements the old and new methods;
finding Schwarzschild taking static spherical symmetry.

Holographic plasma quenches.— We now use this method
to find stationary black holes that are locally asymptot-
ically AdS4, and by AdS-CFT describe CFT stationary
plasma flows in a non-trivial geometry. These are Ein-
stein metrics solving Rµν = − 3

l2 gµν . We choose units so
that the AdS length l = 1. These geometries have a con-
formal boundary we must specify which gives the CFT
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spacetime. We take,

ds2 = −dt2 + dρ2 + σ(ρ)dy2 (4)

which is static and inhomogeneous in ρ, with,

σ(ρ) = 1 +
α

2

(
1 + tanh(βρ)

)
(5)

for constants α, β, so that the geometry asymptotes to
Minkowski for ρ → ±∞. We take the CFT plasma
to be stationary, homogeneous in y, and flowing from
ρ = −∞ to +∞. In the asymptotic regions the plasma
flow becomes homogeneous, and the dual is a homoge-
neous black brane there. In between the plasma flows
in a direction that is not an isometry; hence the plasma
flow is inhomogeneous, and the dual black hole does not
have a Killing horizon.

We take the ingoing plasma to be subsonic with ve-
locity v0 < 1/

√
2 and temperature T0. Using the holo-

graphic fluid/gravity correspondence [7, 8, 42] provided
the boundary metric gradients are sufficiently small,
meaning β/T0 → 0, then the plasma behaves as an ideal
fluid. The first deviation from ideal behaviour is due
to shear viscosity. Upon increasing β/T0 towards unity,
one expects the derivative expansion of hydrodynamics
to break down completely in the region |βρ| ∼ O(1)
where the boundary metric is highly curved, as micro-
scopic physics is required to describe small scale plasma
phenomena. Such solutions represent stationary flowing
plasma quenches.

We write an ansatz for these metrics as,

ds2 =
1

z2
(
−Tdt2 + 2V dtdz + 2Udtdρ+Adz2

+B (dρ+ Fdz)
2

+ Sdy2
)

(6)

with the functions T, V,B, S, U, F,A being smooth (or at
least C2) in ρ and z. The locally AdS4 boundary is at
z = 0, and we impose the boundary conditions such that

T = V = A = B = 1 , U = F = 0 , S = σ(ρ) (7)

there. Using holographic renormalisation [43] we identify
the boundary metric (4), and the vev of the CFT stress
tensor is given by third z derivatives of T, V, . . . , A at
z = 0; details are given in the Supplemental Material.

For regularity at the locally AdS boundary we require
the reference metric to obey the same boundary condi-
tions as the metric. We choose the reference metric to be
a boosted black brane with S deformed to obey (7);

S = σ(ρ) , T = 1− c2r (z/z0)
3
, B = 1 + s2r (z/z0)

3
(8)

F = −sr/B , A = −s2r/B , V = cr , U = srcr (z/z0)
3

for constants z0, r and cr = cosh r, sr = sinh r. We
also use this for the initial guess. We compactify ρ as
dρ = dx/(1 − x2)2 and work in the coordinate domain
x ∈ [−1, 1] and z ∈ [0, zmax]. Our solutions have a future

horizon located at z = H(x) < zmax within this domain
so that horizon regularity is imposed by smoothness of
T, . . . , A. Since ρ ∼ 1/(x∓1) as x→ ±1 and black brane
perturbations decay exponentially in ρ as ρ → ±∞ we
expect for our reference metric the functions T, . . . , A will
have all x derivatives vanish at x→ ±1.

For z = zmax and −1 < x < −1 we impose the equa-
tions of motion as for the interior points. At x = ±1
we impose Neumann boundary conditions. We expect
two moduli, the ingoing surface gravity and velocity of
the horizon, dual to T0 and v0. These moduli are not
fixed by the reference metric in this ingoing method.
To obtain a locally unique solution we fix two pieces
of data. A numerically stable method is to fix Dirich-
let data for V at the point (z, x) = (zmax,−1) and T
at (z, x) = (zmax,+1) setting the values to those of the
reference metric. Thus z0 and r in the reference metric
control the ingoing plasma data T0 and v0.

We use finite differencing and discuss the tests of con-
vergence in detail in the Supplemental Material. Our
code produces approximately fourth order convergence.
For the resolutions used, up to 70 × 280 in z and x, the
maximum fractional local error in the Einstein equations
outside the horizon is better than ∼ 10−7. Hence these
are very good numerical solutions. Convergence tests for
extraction of the stress tensor (which depends on multiple
derivatives) indicate better than percent level accuracy.

From hydrodynamics to quenches.— We now present data
where the ingoing homogeneous plasma has subsonic ve-
locity v0 = 0.50, and temperature T0 = 0.24 in our units.
Since the boundary theory is a CFT, any other temper-
ature is related by an appropriate scaling, and this value
is taken for convenience. We choose the boundary met-
ric to have α = 0.4, and we adjust β to move between
a slowly or rapidly varying geometry. This value of α
is sufficiently large that the boundary metric deforma-
tion from Minkowski cannot be described by perturba-
tion theory. As we shall see, the deviation from homo-
geneous behaviour will correspondingly be large. With
these data we find the dual gravity solution and from
it extract the vevs of the CFT stress tensor components
Ttt, Ttρ, Tρρ and Tyy. The conservation equation together
with tracelessness implies that all the information in the
stress tensor is characterised by a single function of ρ.
We choose to plot the (scale invariant) function v de-
fined by, v/

(
1 + v2

)
= 〈T tρ〉/〈T tt + T ρρ〉 for 0 ≤ v ≤ 1.

v gives the local velocity of the plasma in the stationary
frame, ie. the velocity relative to the stationary frame
required to boost into the rest frame of the plasma. We
emphasise this does not depend on any hydrodynamic in-
terpretation of the stress tensor. In figure 1 we plot this
function for various β between 0.2 and 2. We show the
same quantity for the fluid/gravity viscous hydrodynam-
ics approximation (ie. the fluid velocity) with the same
ingoing data - see the Supplemental Material for details.
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FIG. 1. Velocity v vs. ρ obtained from gravity (solid lines)
and by solving fluid/gravity viscous hydrodynamics (dashed
lines), for β = 0.2, 0.3, 0.5, 0.7 (top, black to light grey) and
β = 1, 1.5, 2. (bottom, black to light grey). The plasma flows
from left to right, starting in the same initial equilibrium state
for the different β. For small β we see agreement with hydro-
dynamics. For large β we see strong deviations; for β = 2 the
flow is superluminal in part of the quench region |βρ| ∼ O(1).

We see that for the smallest β = 0.2 the agreement
of the gravity stress tensor with that of viscous hydro-
dynamics is good. The agreement becomes worse as β
increases and higher derivative terms in the hydrody-
namic expansion become important. For β ' O(1) the
hydrodynamic approximation breaks down and we are
in the quench regime. The bulk solutions remains per-
fectly smooth and allow us to compute the behaviour of
this strongly coupled plasma flow. The deviation from
hydrodynamics becomes large; for β = 2 we find the
plasma becomes superluminal in a region where the met-
ric is curved, so 2〈T tρ〉 > 〈T tt + T ρρ〉 and hence the
plasma has no rest frame. The stress tensor vev violates
the weak and dominant energy conditions in this region,
although all the stress tensor vev components are well
behaved - for example in the Supplemental Material we
display 〈T tt〉.

Interestingly we find the equilibrated outgoing plasma
has a temperature, and hence entropy density, that is
roughly independent of β. The same is true for the
fluid/gravity viscous hydrodynamics. One can see in fig-
ure 1 that the outgoing velocities v are numerically close
for the different β, although they are not obliged to be
by stress energy conservation. We emphasise that whilst
the total entropy generated in these flows is similar for
different β, the region where the spacetime is curved and
hence this entropy is generated is very different, becom-
ing small for large β. Hence for strong quenches the
entropy density in the plasma is generated in a sudden
non-adiabatic manner.
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FIG. 2. Velocity of the horizon ΩH (top) and surface gravity
κ2 (bottom) as functions of ρ for the same flows as in Fig. 1.
These functions explicitly depend on ρ as the horizon is non-
Killing. For ρ → ±∞ both ΩH and κ become constant since
our solutions approach homogeneous boosted black branes.

The horizon, defined by the zero set of h(z, ρ) =
z −H(ρ) is a null surface so that, gµν ∂µh ∂νh = 0. This
is an o.d.e. for H(ρ) which can be solved to find the
horizon location. The null tangent to the horizon can
be written, χ = ∂

∂t + ΩH(ρ)R , where R has unit norm
R2 = 1, is tangent to the horizon and orthogonal to ∂/∂t
and ∂/∂y. Then ΩH(ρ) gives the local velocity of the
horizon, and is plotted in figure 2. We note this is well
behaved even for the flow with β = 2 which has superlu-
minal boundary stress tensor. The boundary metric, and
consequently the bulk metric, explicitly depend on ρ and
so ∂/∂ρ is not Killing. Thus the spacetime motion is not
rigid, and hence the local velocity ΩH explicitly depends
on ρ, rather than being constant. We also compute the
surface gravity κ defined as ∇µ(χνχ

ν) = −2κχµ. Again
this is not constant, and is plotted in the same figure.
It is also well behaved for β = 2. Further details of the
solutions are given in the Supplemental Material.

Discussion.— Perhaps our most striking result is that for
a strong quench with β = 2 we find localised superlumi-
nal plasma flow and associated violation of energy con-
ditions. We presume this indicates these flows become
dynamically unstable for sufficient quench strength. It is
possible this instability is turbulent in nature, in analogy
with global AdS-Kerr which may also have superluminal
dual plasma [44, 45] with a corresponding superradiant
instability that is conjectured to be turbulent [19, 46, 47].

Note added.— [48] appeared simultaneously with this
work, finding flowing funnels with non-Killing horizons.

Acknowledgments.— We thank G. Holzegel, L. Lehner,
D. Marolf, R. Myers, H. Reall, J. Santos and B. Way for
valuable discussions.
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