SUPPLEMENTAL MATERIAL

Illustrative toy example

In this appendix we illustrate the old method, which
assumes a Killing horizon, and the new ingoing method
described in this paper, using a simple toy example;
numerically finding the Schwarzschild solution assuming
spherical symmetry. The purpose is to contrast the two
methods, and illustrate explicitly how to use them in as
simple a context as possible. We hope this will be of use
to a reader interested in actually implementing these
methods in more complicated settings.

The old Killing horizon method

We write an ansatz for the black hole metric as,
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where d€)? is the line element on the unit round 2-sphere,
A, B, S are smooth (at least C2) functions of a compact
coordinate r € [0,1] and f(r) = 1 — 2. We require
A=B =S5 =1atr =1 giving asymptotic flatness.
Regularity at the horizon r = 0 implies that A, B, S must
be smooth functions in 72, and then & gives the surface
gravity.

We may discretize A, B, S on the interval [0,1] and
then require Neumann boundary conditions at r = 0
for these functions. As an example, one might take the
reference metric and the initial guess to be the above
metric with A = B =1— f/2 and S = 1 (which is not
Schwarzschild). On finding a solution, one obtains that
odd derivatives at v = 0 vanish. However this approach
suggests there is a boundary at the horizon, which
really there is not. A better way to think is solving the
problem in the domain [—1,1] requiring smooth and
even solutions so A(—r) = A(r) and similarly for B and
S. Using finite difference or pseudo-spectral methods
one may choose lattices with even numbers of points
that avoid r = 0 altogether. Then we have no boundary
at the horizon and instead solve the problem on the
complete t = 0 slice representing the Einstein-Rosen
bridge that intersects the bifurcation surface.

ds® = —1? (HQfB + rzA) dt? +

The new ingoing non-Killing horizon method

Take an ansatz with ingoing time ¢,
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for a compact coordinate z € [0,1] with T,V, A, S suffi-
ciently smooth (at least C2) functions of 2. We impose
asymptotic flatness as T =V =S5 =1 and A = 0 at

z = 0. For monotonic S the horizon occurs at T' = 0 and

provided V is non-zero and the functions are smooth in
z there then the horizon will be regular. Now z = 1
is not regarded as a boundary, and the equations (2) of
the main text are imposed there as in the interior of the
domain. We must impose one condition to select the
Schwarzschild solution we wish to find, ie. to choose a
mass. A simple way to fix this is that instead of solving
the tt component of (2) in the main text at z = 1, we
replace it with a Dirichlet condition for 7" at z = 1, so
T|.=1 = Tinner where Tjppner < 0 to ensure the domain
pierces the horizon [I]. Consider the smooth metric,
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for constant « — note this is not Schwarzschild. As an
example let us take this metric with o = 1.10 as the
reference metric, and with « = 1.20 as the initial guess.
The Newton method then converges to a solution with
0,T|.—0 = —1.06. Note that had one tried to find a
black hole where the horizon was located at z > 1, for
example taking an initial guess so that Tj,ne > 0 then
the method fails. The requirement of a smooth horizon
is crucial to impose boundary conditions correctly.

Two important points arise in this example. Firstly
experimentally we find that for second order finite differ-
ence the method fails, presumably as it doesn’t impose
smoothness of the functions to a sufficient degree. Cer-
tainly for fourth order or above the method works very
well, as it does for pseudo-spectral differencing. A second
point is that if we had not imposed T' = Tipper at 2 =1
but only the equations of motion there we would not ob-
tain a locally unique solution. We emphasise that in this
ingoing method the reference metric does not determine
the moduli (in this case mass) of the solutions found.

Details for inhomogeneous plasma flows and their
duals

For a given boundary metric deformation specified by
the constants « and 3, the solution is determined by the
parameters r, zg as discussed in the main text. We note
that the global scaling 2% = (¢, p,y) — Az of the bound-
ary together with scaling of the parameters @ — « and
B — A7!8, and the boundary stress tensor components,
(Ga(Twp)) — A3(G4(Tup)) relates solutions due to the
conformal invariance of the boundary theory. In practice
we choose zg = 1 and 2,4, = 1.025, then vary r to obtain
the required ingoing velocity vy (or equivalently ingoing
value of (T) /(T + T )) which is scale invariant. In
principle we would then use the above scaling to generate
a solution with the required ingoing temperature Ty (or
equivalently ingoing value of G4(T}:)). However, for rea-
sons that we do not understand (presumably related to
the details of the way we fix the moduli of the solution)
the value of Ty is actually the same to better than per-
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FIG. 3. Coordinate positions of the horizon (solid lines) and
ergosurface (dashed lines) for the flows in figure 1 of the main
text. The larger the value of 8 the deeper the horizon pene-
trates in the z-direction. Entropy is produced along the flow
and hence the area density of the horizon is larger on the right
end.

cent level for the various values of 5 we have explored,
and so we have not needed to apply any scaling to the
data presented here.

In figure |3} we plot the position of the ergoregion (de-
fined by T' = 0), and the horizon solved from the o.d.e.
g"" 0,h0,h = 0 discussed in the main text. We note
that both have a complicated dependence on x, although
as expected this vanishes as x — 41 where the metric
becomes that of a homogeneous black brane, which in
the coordinates defined by our reference metric will have
ergoregion and horizon at constant z. Note also that the
position of the horizon lies entirely within our domain
0 < z < Zmae = 1.025 for all the solutions presented
here. Since the metric functions are smooth at the posi-
tion of the horizon, the future horizon is regular.

We solve the Einstein equations and gauge condition
&F = 0 as a power series in z near the boundary at z = 0,
and then transforming from our ingoing coordinates to
Fefferman-Graham coordinates, we extract the vev of the
dual CFT stress tensor from the z3 terms in the expan-

sions of T,V ..., A using holographic renormalisation [2].
Defining,
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then t3, b3, us3, s3 can be obtained from the bulk solution.

For example, for t3 one finds an equation,
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where we give all functions in terms of the compact coor-
dinate x (rather than p), f(r) = 1—2? and sy, = sinh kr.
However, since the gauge condition £# = 0 relates the
derivatives of the various metric functions, there are 3
other ways to extract t3 from three z derivatives of the
other metric functions than 7. For a continuum solu-
tion these must all give the same answer, and we use this
to test the accuracy of our stress tensor determination
shortly. The other b3, us, s3 can similarly be extracted
from three z derivatives of the various metric functions,
and again there may be multiple ways to do this which
are equivalent on Einstein solutions. The equations of
motion also imply that b3, us, ss are locally related to
t3 as the stress tensor is traceless and conserved, which
again we check shortly.

In figure 4| we display the vev of the T component
of the holographic stress tensor and compare it with the
same component of the viscous hydrodynamic stress ten-
sor, , for varying B in analogy with figure 1 in the
main text. We see the same agreement with viscous hy-
drodynamics at small 3, with strong deviations from it
for B ~ O(1). We note that (T"") is well behaved even
for the 8 = 2 flow which has a superluminal region.

In the figures above we have compared the holographic
plasma behaviour extracted from the dual black holes to
the viscous hydrodynamics predicted by the fluid /gravity
correspondence. This gives a good approximation for
|8/To] < 1. We now give details about these hydrody-
namic fluid flows. Recall that the viscous fluid approx-
imation to the plasma flow from fluid/gravity is deter-
mined by the fluid stress tensor[3],
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for a 142-dimensional boundary metric ds? =
g((ll;)da:“dmb, temperature T, 3-velocity u® with u? = —1

and with P, = ugup + ggl?. The first term is that of an

ideal fluid, and the latter is due to shear viscosity. For
our flows, we take the 3-velocity in the p direction, so
u® = (,7yv,0), with v the velocity and 72 = 1 — v2.
For small but non-vanishing S the viscous term will gen-
erate entropy and the fluid deviates from ideal behaviour.



FIG. 4. Plot of (T*) normalised by its ingoing value T¢*
vs. p for the holographic stress tensor (solid lines) and the
stress tensor of viscous hydrodynamics (dashed lines). Top:
Flows as in figure 1 of the main text with § = 0.2,0.3,0.5,0.7.
Bottom: flows with 8 = 1.,1.5,2. For 8 ~ O(1) the stress
tensor exhibits O(1) features at small scales (compared to
the length scale set by the temperature) and hydrodynamics
no longer provides a valid description of the flow.

The equation of motion for the fluid is given by conser-
vation of this stress tensor. For our boundary metric
there are two non-trivial components. One immediately
yields G4(T,) o 1/+/o. Combined with the second, one
obtains first order o.d.e.s for the fluid velocity and tem-
perature, as discussed in [4] [B]. It is these we have solved
in order to compare to our numerical bulk solutions. In
figure [5| we display the behaviour of the temperature for
the flows obtained from viscous hydrodynamics which we
compared to the stress tensor from the gravity dual in fig-
ure 1 of the main text and figure [4| here (we note that the
velocity of these hydrodynamic flows are already shown
in figure 1 in the main text). For comparison with the
viscous hydrodynamics we also show the ideal hydrody-
namics solutions for the same ingoing fluid data. We see
that as expected, for small 3 these closely agree, but for
B ~ O(1) the viscous behaviour departs strongly from
the ideal behaviour, and likewise as we have seen in fig-
ure 1 of the main text and figure [4] here, deviates from
the full plasma behaviour as deduced from the gravity.

Numerical errors and metric functions

For the results presented in this paper we have dis-
cretized the harmonic Einstein equation using sixth order
finite differencing, taking a uniform grid with NV, lattice
points in the z direction, and N, = 4N, lattice points
in x. We note that especially for the small 3 solutions
where there are sharp gradients in the function o near
the boundaries of the domain it is important to have suf-
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FIG. 5. Temperature, T, plotted normalised by the ingoing

temperature Ty vs. p from viscous fluid/gravity hydrody-
namics (solid lines) and for ideal fluid/gravity hydrodynam-
ics (dashed lines) used to compare to the holographic plasma
flows in figure 1 of the main text and figure[d here. We empha-
sise that these only approximate the holographic plasma flow
well for small 8. Top: flows with § = 0.2,0.3,0.5,0.7. Bot-
tom: flows with 8 = 1.,1.5.,2. We see for small § agreement
between the viscous and ideal hydrodynamics since there is
little entropy generation. For larger 8 ~ O(1) viscosity be-
comes important and the behaviours strongly differ.

ficient resolution in the z direction to obtain accurate re-
sults. We have used resolutions up to N, x N, = 70 x 280
points. Typically we begin by finding solutions at lower
resolutions, and then use these as initial data to find the
higher resolution solutions.

We characterise the numerical error in our solutions by
computing the error in solving the Einstein equations as,
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where each is a scalar quantity which should vanish in
the continuum for a solution, and is maximised for the
solution in the exterior of the horizon. We maximise only
over the region exterior to the horizon to obtain a well
defined geometric quantity. We note that similar results
are obtained when maximising over the entire domain.
Typical results of convergence tests are shown for an in-
termediate value of 8 =1 in figure [f] For the maximum
resolutions used, we see that the maximum local error in
the solution is better than 10~7, as stated in the text. In
addition, £&5 — 0 in the continuum limit, which indicates
that our solutions are not Ricci solitons. Similar results
are obtained for the other values of 8 (including 5 = 2)
discussed in this paper.
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FIG. 6. Convergence plots for the solution with § = 1. We

show &1 (‘0’), & (‘x’) and &3 (‘+’), which measure the maxi-
mum error in the Ricci scalar, Ricci tensor and the magnitude
of /|€r&,| respectively, as a function of the number of grid
points in the z-direction, N.. The resolution in z is given as
Nz = 4N,. We see linear convergence in this log-log plot.
For £ and & we find the slope is ~ 4 indicating fourth order
convergence, whilst for £ the slope is ~ 6. Other solutions
exhibit the same convergence behaviour.

We note that whilst we have used sixth order finite
differencing, the slope of these curves against log NV, is
between ~ 4 — 6 depending on the quantity. We would
naively expect ~ 6 for smooth solutions. We believe the
observed lack of smoothness is not physical but due to
our coordinate choice near the boundaries x = £1. Since
these boundaries are regular singular points of the p.d.e.s
it maybe that there are (x F 1)?log|z F 1| behaviours
in the expansions of the metric functions for our gauge
choice, where p is some power presumably with p > 4.
We emphasise that we require only second derivatives
to be defined for a solution to the Einstein equations,
and the convergence we see is certainly much better than
that, indicating the metric functions are better than C?
in smoothness. As we show later, explicit calculation
of the various two derivatives of metric functions gives
well behaved results, again confirming better than C?
smoothness. However, the apparent lack of C*° smooth-
ness does lead to poor convergence results when using
pseudo-spectral differencing, hence our use of finite dif-
ference. An obvious future direction is to improve the
coordinate choice.

We monitor the errors in the extraction of the stress
tensor. As discussed in appendix B the components of
the stress tensor t3(x), us(z), s3(x) and bz(x) may be
extracted from the 7 metric functions in different ways
which should agree in the continuum. In figure |7 we
display the fractional error in the different ways of ex-
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FIG. 7. The function t3 may be extracted from the metric

functions in 4 independent ways which are equivalent in the
continuum. Here we plot the maximum value of the three
fractional errors, A® characterising the deviation between
these as a function of the number of grid points in the z
direction, N., in a log-log scale for the § = 1 solution. We
observe first order (or slightly better) convergence, which is
consistent with the overall observed 4*® order convergence as
the quantity t3 involves 3 derivatives of the metric functions.
We obtain the same results for other values of 5.

tracting ¢s3:

A@® — 3
¢

max
—1<z<1

, i=123, (16)

where téo) denotes the value of 3 obtained from 927|,—

as given in equation , and tz(;) correspond to the other
values obtained from the remaining independent combi-
nations of metric functions. As this figure shows, A
is consistent with vanishing in the continuum limit with
a slope ~ 1 in a log-log plot. This is the expected be-
haviour; from the equations of motion we have seen that
we have fourth order convergence and the calculation of
t3 involves taking three derivatives of the metric func-
tions. Therefore we expect the error in this quantity
should exhibit approximately first order convergence. We
see for our highest resolution data that the maximum
fractional error is less than percent level. We obtain anal-
ogous results for other components of the stress tensor
which may be extracted in multiple ways, which we note
includes the test of tracelessness of the stress tensor.
Next we consider the error in the two non-trivial com-
ponents of the conservation equation of the stress tensor:

!/ 1 /
C1 = max ot R ,
—l<z<l|ug 2 0
, , (17)
Cy = max b—3+0— 1—i-t—3
2T I b3 o 2 b3 ’

where each quantity should vanish in the continuum
limit. In figure [§] we display C; and C; as a function



10 %
o -
10
10— —
107 o
N x
o «
-3
10 ‘ A
20 30 N40 50 60 70
z
FIG. 8. Convergence plots for Ci,2, the maximum errors in

the two non-trivial components of the conservation equation
for the stress tensor for the = 1 solution. The apparent
linear convergence in this log-log plot against N, has slope
~ 4 for C1, and ~ 1 for C>. These are consistent (or better)
than expected, given the overall 4" order convergence, and
that the conservation requires three derivatives of the metric
functions in z and one in x.

of the number of grid points in the z direction, V,, again
in a log-log plot. As this figure shows, the error in C;
exhibits almost fourth order convergence, which is bet-
ter that one might have naively expected. On the other
hand, the convergence in Cs is slightly better than first
order, which is consistent with behaviour of the error in
extracting t3 and b3 as discussed above. We obtain simi-
lar convergence results for the other g studied, including
8 =2.

In summary, our analysis of the numerical errors show
that the solutions we present are of high quality, the
maximum fractional error in the solutions being better
than ~ 10~7. The finite differencing method we have
implemented gives convergence to the continuum limit
consistent with fourth order scaling. Our extraction of
the components of the stress tensor exhibits the expected
convergence, and we may estimate that the maximum er-
ror in these components is better than 1%.

We now turn to the metric functions. For concrete-
ness, in figure [9] we show T' and S over the domain for
the 8 = 1 solution, and note that these are coordinate
scalars with respect to z and x coordinate transforma-
tions. In figure|10|we show the functions 92T and 925 to
illustrate that the metric is better than C? and also that
derivatives of the metric functions vanish as expected at
& — *1 in the coordinate system defined by our reference
metric (since the bulk solution becomes a homogeneous
black brane there). The other metric functions show the
same behaviour as those we show here. Likewise, tak-
ing other two derivative combinations of these we obtain
analogously well behaved functions. We obtain similarly
well behaved metric functions for all other values of 3

FIG. 9. Metric functions T'(z,z) and S(z, z) for the solution
with 8 = 1. These and the other remaining metric functions
V,B, F,U, A, are well behaved everywhere in our domain, in-
cluding the region inside the horizon.
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FIG. 10. 92T and 925 for the 8 = 1 solution. As expected
these are largest where o(x) changes most rapidly. We em-
phasise that these and other two derivatives of the various
metric functions are well behaved over the domain and van-
ish at the asymptotic ends x — +1 where the flows and dual
black brane become homogeneous.

presented here, including § = 2.

Finally we plot the Weyl curvature as characterised by
the scalar C,,,,,C**P? over our domain in figure [T1] and
note that it is smooth, with no indication of any singular
behaviour over the domain, again indicating the metric
functions are better than C? smooth.
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FIG. 11. CuvpsC*"*? for the 8 = 1 solution. This function
vanishes at the boundary of AdS and well behaved elsewhere,
indicating the absence of singularities. At x — 41 where the
flow and dual black brane are homogeneous the Weyl tensor
also becomes homogeneous, with its xz-derivative vanishing.
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