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Conventions:

We use conventions as in lectures. In particular we take (−, +, +, +) signature.

You may find the following formulae useful:

The Christoffel symbol is defined as,

Γµ αβ ≡
1
2

gµν
(
∂αgνβ + ∂βgαν − ∂νgαβ

)
The covariant derivative of a vector field is,

∇µvν ≡ ∂µvν + Γν µαvα

and for a covector field is,

∇µwν ≡ ∂µwν − Γ
α
µνwα

For a Lagrangian of a curve xµ(λ) of the form,

L =
∫

dλL(xµ,
dxµ

dλ
)

the Euler-Lagrange equations are,

d
dλ

 ∂L

∂(dxµ
dλ )

 =
∂L

∂xµ
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Section A

Answer all of section A.
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SECTION A

1. This question concerns the covariant derivative.

(i) State how the components of a (1, 0) tensor vµ and a (0, 1) tensor wµ transform
under a coordinate transformation x → x ′.

[4 marks]

(ii) Use your previous answer to show that vµwµ transforms as a scalar under a
coordinate transformation x → x ′.

[4 marks]

(iii) Under a coordinate transformation the Christoffel symbol transforms as;

Γ′µ
′

α′β′ = Γµ αβ
∂x ′µ

′

∂xµ
∂xα

∂x ′α′
∂xβ

∂x ′β′
−

(
∂2x ′µ

′

∂xα∂xβ

)
∂xα

∂x ′α′
∂xβ

∂x ′β′

Does the Christoffel symbol transform as a tensor?
[4 marks]

(iv) Show that ∂µwν, the partial derivative of a covector field wµ, does not transform
as a tensor.

[4 marks]

(v) Starting from the identity,

δµν =
∂xµ

∂xν
=
∂xµ

∂x ′ν′
∂x ′ν

′

∂xν
(1)

take an appropriate partial derivative of this to derive,

∂x ′ν
′

∂xν
∂x ′α

∂xα
∂xµ

∂x ′α∂x ′ν′
= −

∂xµ

∂x ′ν′
∂x ′ν

′

∂xα∂xν
(2)

[4 marks]

(vi) Show that the covariant derivative of a covector field wµ, defined as ∇µwν =
∂µwν − Γα µνwα, does transform as a tensor.

[4 marks]

[Total 24 marks]
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Section B

Answer 2 out of the 4 questions in the following section.
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SECTION B

2. This question concerns the Newtonian spacetime, which we write using coordinates
xµ = (t , x i) with i = 1, 2, 3 as,

ds2 =
(
ηµν − 2εΦ(x)δµν

)
dxµdxν

where εΦ is the Newtonian potential, and we are interested in the Newtonian limit
ε → 0 so that |εΦ| � 1 .

(i) State the stress tensor for a perfect fluid in a general spacetime in terms of its
energy density ρ, pressure P and local 4-velocity uµ (where uµuµ = −1).

[1 mark]

(ii) In the limit ε → 0 the components of the Ricci tensor to leading order in ε are;

Rtt = ε δij∂i∂jΦ

Rti = 0
Rij = ε δij (δab∂a∂bΦ)

Use these to compute the components of the stress tensor that satisfies the
Einstein equations for this spacetime. Show that this is the stress tensor for a
dust fluid (ie. fluid with zero pressure), and determine the 4-velocity and energy
density of this dust in terms of the Newtonian potential εΦ.

[1 mark]

(iii) By calculation, show that to leading order in ε,

Γi
tt = +ε∂iΦ

Using this, show that a non-accelerated particle that is slowly moving obeys (to
leading order in ε → 0),

d2x i

dt2
= −∂i (εΦ)

[1 mark]

[Total 3 marks]

PT4.2 6 Please go to the next page



3. This question concerns the Schwarschild metric, which we write using coordinates
xµ = (t , r , θ, φ) as,

ds2 = −
(
1 −

2G M
r

)
dt2 +

(
1 −

2G M
r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
for a mass M, with G the Newton constant.

(i) Consider a timelike geodesic xµ(τ) = (T (τ), R(τ),Θ(τ),Φ(τ)) in the
Schwarzschild metric where τ is proper time. Write a Lagrangian that we may
vary to determine the geodesic. Deduce the Euler-Lagrange equations for Θ
and Φ. Show these are consistent with a geodesic that lies in the plane θ = π/2.
We now restrict our attention to such geodesics. Show then that,

R2 dΦ
dτ

= J

where J is a constant.
[1 mark]

(ii) Further deduce the equations that govern T and R. Show that,(
1 −

2G M
r

)
dT
dτ

= k

were k is a constant. Hence show the equation governing the radial motion
in the plane θ = π/2 looks like that of one dimensional motion for a unit mass
particle in a potential V (R) with constant energy E so,

E =
1
2

(
dR
dτ

)2

+ V (R) , V (R) = −
G M
R

+
J2

2R2
+
αJ2

R3

where α is a constant depending on the mass M and Newton constant G that
you should determine.

[1 mark]

(iii) Show that for a circular orbit, with constant radius R = R0, then,

V ′′(R0) =
J2

R4
0

(
1 +

6α
R0

)
(1)

[1 mark]

(iv) Compute the proper time Tang required for Φ to traverse an angle 2π. Show that
for a circular orbit radius R = R0 that is perturbed a little, so R(τ) ' R0 + δR(τ),
the motion approximately performs simple harmonic oscillation with period,

Trad =
2π√

V ′′(R0)

Comment on the relation between Tang and Trad .
[1 mark]

[Total 4 marks]
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4. (i) Consider a particle following a timelike curve xµ(τ) in a general spacetime,
where τ is the particle’s proper time. The 4-velocity vµ = dxµ/dτ. Give the
expression for the 4-acceleration aµ in terms of vµ and its covariant derivative.

[1 mark]

(ii) Show that for the case of Minkowski spacetime in Minkowski coordinates xµ =
(t , x i) so that ds2 = ηµνdxµdxν then this reduces to the Special Relativity result,

aµ =
d2xµ

dτ2
(1)

[1 mark]

(iii) By carefully varying the action,

L =
∫

dτ
(
gµν

dxµ

dτ
dxν

dτ

)
(2)

show that the Euler-Lagrange equations are related to the geodesic condition
vµ∇µvν = 0 as,

2vµ∇µvα =
d
dτ

 ∂L
∂dxα

dτ

 − ∂L

∂xα
(3)

[1 mark]

(iv) Consider now a particle coupled to a vector field Aµ(x) in a general spacetime
so that its Lagrangian is modified to,

L =
∫

dτ
(
gµν(x)

dxµ

dτ
dxν

dτ
+ Aµ(x)

dxµ

dτ

)
(4)

Show that the 4-acceleration of the particle is;

aµ =
1
2

Fµνvν , Fµν = ∇µAν − ∇νAµ (5)

[1 mark]

[Total 4 marks]
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5. (i) Show that the Christoffel symbol is related to partial derivatives of the metric as,

∂αgµν = gµβΓβ αν + gνβΓβ αµ

(ii) The Lie derivative of a (0, 2) tensor Aµν with respect to a vector field wµ is,

(Lie)(w, A )µν = wα∂αAµν + Aµα∂νwα + Aαν∂µwα

Suppose we consider the Lie derivative of the metric gµν. Show that this can
also be written in terms of the covariant derivative as,

(Lie)(w, g)µν = ∇µwν + ∇νwµ

If this vanishes, we say wµ is a Killing vector field.
[1 mark]

(iii) Consider a timelike particle with velocity vµ = dxµ/dτ for proper time τ. Suppose
it follows a geodesic in a spacetime with a Killing vector field wµ. Show that the
quantity,

φ = −wµvµ

is constant along the particle’s trajectory.
[1 mark]

(iv) Consider the spacetime with coordinates xµ = (t , x i)

ds2 = −N(x)dt2 + gij(x)dx idx j (1)

where N and gij only depend on the spatial coordinates x i and not time t .
Show that there is a Killing vector wµ for this spacetime and explicitly check
that Lie(w, g) = 0. Write down the conserved quantity φ for a non-accelerated
particle’s motion. Is this the energy of the particle as measured by observers
sitting at constant spatial position?

[1 mark]

(v) In the spacetime in equation (1) above write down a Lagrangian that may be
varied to deduce geodesic motion in the spacetime. Show using the Euler-
Lagrange equations that the quantity φ is indeed conserved.

[1 mark]

[Total 4 marks]
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