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Conventions:

February 5, 2013

We use conventions as in lectures. In particular we take (—, +, +, +) signature.

You may find the following formulae useful:

The Christoffel symbol is defined as,

r B = %QHV (5(zgvﬂ + 0pQav — 31/90/5)
The covariant derivative of a vector field is,
Vv =0V 4T v
and for a covector field is,
vuw, =0,w, - T

We

ot
ng

For a Lagrangian of a curve x#(A1) of the form,
ax*
L= | d1L(x, —
f L(x i )

the Euler-Lagrange equations are,
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Section A

Answer all of section A.
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SECTION A

1. This question concerns accelerated motion in curved spacetimes.

PT4.2

(i)

(i)

Suppose we have a massive particle following a trajectory x*(r) in a general
spacetime, where 1 is the particle’s proper time. The particle’s 4-velocity v* is
defined as v = dx*/dr. Why is vy, = —-1?

ANSWER:
Testing material given in lectures.
In an infinitesimal time dt the spacetime interval will be,

dx* dx” | ,

2 _ HAy” — -
ds® = g, dx"dx” = g, — dr (1)

Now proper time for a particle is defined to be ds? = —dr? and so,
-1 =gy—— =g,V'V (2)
T

Probable mark assignment: 4 for method, 1 for accuracy.
[5 marks]

Use the chain rule property of derivatives to show that the 4-velocity transforms
as a vector.

ANSWER:

Testing material seen in lectures.

Under a coordinate transform, so that x’*" = x’*'(x”), then using the chain rule,
ax’®  ox™ dx*  ox

_ _ - _ 1
=Tt T oxk dr . oxe ! (3)

and hence this does indeed transform as a vector.

Probable mark assignment: 2 for knowing vector transformation, 2 for chain
rule, 2 for general method, 1 for accuracy.

[7 marks]

The 4-acceleration a* is defined as a* = vV, v*. Show that in Minkowski space-
time this can be written as a* = d?x*/dr2.

ANSWER:
Testing material given in lectures.

[This question continues on the
ANSWERS 4 next page ...]
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PT4.2

(iv)

In Minkowski spacetime ', = 0 and so,

dx” ovi  dv*  dPx*
at=vvVvw=viow=——=—-=
dr ox* dr dr?

(4)

Probable mark assignment: 2 for general method, 2 for I' = 0 in Minkowski, 1
for chain rule, 1 for accuracy.

[6 marks]

By considering vVVV(vf‘v#), show that a* and v* are orthogonal 4-vectors (ie.
atv, =0).

ANSWER:

Testing material discussed in lectures and example sheets, although not in this
exact format.

Start with v#v, = —1. Then act with v’d, to obtain,
0= vyav(v“vﬂ) =V'V, (v”vﬂ) =2viVv'V,v, = 2vig, (5)

Probable mark assignment: 1 for general method, 1 for understanding V is 0
on a scalar, 2 for understanding v*d,(v?) = 0, 2 for product rule, 1 for accuracy.

[7 marks]
Show that since a*v, = 0 then a* must be a spacelike vector.

ANSWER:
Material discussed in lectures and example sheets.

Go to the instantaneous local inertial frame of the particle, so that at some point
p on its trajectory then v* = (1,0,0,0) and g,, = 1,, at that point. Then since
a’v, = 0 then, a' = 0, so that,

a' = (0,a’) (6)
for 3-vector a', and so,
gna'a’ =d;a'a =(a')?+(a%)?+(@%? >0 (7)

atthe point p. Note that if g,,a“a” = 0 then a* = 0 and the acceleration vanishes.
So for non-vanishing acceleration g,,a“a” > 0 at p and so a* is spacelike there.
But we could have chosen p to be any point on the trajectory, and hence a*
must always be spacelike.

Probable mark assignment: 2 for method, 2 for correct use of local inertial
frame, 1 for accuracy

[5 marks]

[This question continues on the
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(vi) Now consider a particle moving in the Schwarzschild spacetime, with coordi-
nates x* = (t, r, 6, ) and metric,

2M oM\
ds® = — (1 - T) dt? + (1 - T) dr? + r? (de? + sin® gdlg?) (8)

Consider a particle accelerating to stay at constant spatial position, so that r, 9, ¢
remain constant. Use the fact that,

M 2M
rrtr=ﬁ(1—7)arttr=r9tt=r¢n=0 (9)

to calculate the norm +/a*a, of the 4-acceleration of the particle for r > 2M.
What happens to this quantity at r = 2M and why?

ANSWER:

Part of this has featured in an example sheet question, but not in the same
format, so this will be unfamiliar to the great majority of students.

The 4-velocity is v* = (f,0,0, 0) for some function f since the particle is kept at
fixed position in space. Then since g,,v/v" = —1 then,

2M
—1-=\Ff =-1 (10)
r
so that,
f= ! (11)
M
-2
The 4-acceleration is,
1
a' = V'V V' = VOV + VIVITH = Vg + VIVITH = T = mrﬁ « (12)

r

Using the Christoffel components given in the question we have, a' = a = a% =

0 and,
1 1 M 2M M
a*@“ﬁ@ﬁ(“?):ﬁ (13)
Then the norm,
1 M
2'a,=9nla) = g (14)
r

[This question continues on the
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PT4.2

so that,

1 M

T (15)

This is indeed spacelike (ie. > 0) for r > 2M and diverges, +/a”a, — oo at
r = 2M. This is the horizon of the black hole, and an infinite acceleration is
required to keep a timelike particle sitting at the horizon.

Probable mark assignment: 2 for method, 2 for correctly getting velocity, 4 for
correctly computing acceleration and norm, 2 for interpretation

[10 marks]

[Total 40 marks]
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Section B

Answer 2 out of the 4 questions in the following section.

PT4.2 ANSWERS 8 Please go to the next page
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SECTION B

2. This question concerns the Einstein equations for a star made of perfect fluid.

PT4.2

(i)

(ii)

State the stress tensor T, for a perfect fluid in terms of the fluid energy density
p, pressure P and 4-velocity u* (recall u“u, = —1). Take n* to be orthogonal to
u* and consider n“V”T,, to derive one of the fluid equations,

(8, + (p + P)u'V,u,) = 0 (1)

ANSWER:

Perfect fluid equations were discussed in lectures and example sheets, but not
in this exact way.

The stress tensor is;
T, =pu,u, + P (uﬂuy + qu) (2)
Conservation is;
0=V*T,, = (V'p)u.u, +p (u,,V“uv + uVV”uﬂ)
+(V¥P) (uﬂuv + gﬂv) +P (uﬂV“uy + uVV“uH) (3)
where we recall V¥g,, = 0. Then contracting with n” and using n"u, = 0 gives,

0=UVrT,,

e, (nvu,lV"uv) + (VHP) (nvg,w) +P (nvu#V“uv)
n(V,P) + 0" (o + P) (u,V"u,) (4)

and V,P = 9,P as it is a scalar, and hence this gives the result.
Probable mark assignment: 3 for stress tensor, 3 for method, 2 for accuracy

[8 marks]

Consider a time independent, spherically symmetric metric describing a star.
We take coordinates x* = (t, r, 8, ¢) and a metric,

1
h(r)
where f(r) and h(r) are functions of r. The star is made of perfect fluid. Since
it is static then v = (T(r),0,0,0). Firstly determine the function T(r). Then

using part i) above, choose n* = (0,1,0,0) and compute the necessary I'*,,
components to show that,

ds? = —e®dt2 + —dr® + r? (d@2 +sin? 9d¢2) (5)

dP df

—=— P) — 6

dr +FP) dr ©)
[This question continues on the
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ANSWER:

The stellar metric was not covered in lectures or example sheets, so this is
unseen material.

Now since g, u“u” = -1 we have,
~1 = guU'u” = gyu'u' = -6 T (7)
and so,
r-et ®)

Consider the equation from part i) with n* = (0, 1, 0, 0), then,

0 = (3P +(p+P)uV,u,)
= 9P+(p+P)UV,
= 0,P+(o+P)(Uou +T" ,U"u,)
= 0P+ (p+P)(Udu +T" ')
= 0,P+(p+P)I" t,gnutut
= 0,P+(+P)I, e*T?2
= O,P+(p+P)I" ir (9)
Now we require I'* , ;
1
rl‘ tr = Egtv (atgrv + argtv - 6vgtl’)
]
= EQH (0t9rt + 0, G — 0tGrr)
]
= Egttargtt
]
- 3 e2fN g g2
= arf (10)
and then,
0 = P+(p+P)I" ir
= O,P+(p+P)of (11)
as required.

Probable mark assignment: 2 marks for getting T, 4 marks for overall method,
3 for accuracy

[9 marks]

[This question continues on the
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(i) The non-zero components of Ricci with one index up and one down are,

2hdf 1dhdf 1dh 1dhdf
t - =2z 7 R - _ 7.
R rdr 2adr dr+L(r)’ r rdr 2drar (")
1 1dh hdf
R, = R, =—(1-h -2 1% 12
0 ¢ r2( ) 2rdr rar (12)

where L(r) is a function of f and h you will not need to know explicitly.

Calculate the Einstein tensor components, G; and G,,, and then the correspond-
ing tt and rr components of the Einstein equations. Define,

2m(r)

hr) =1 - =

(13)

and then show these Einstein equations yield,

dm 5 df m+4nGnriP
ar SO = T e

[ These are the Tolman-Oppenheimer-Volkoff equations for a relativistic star. ]

(14)

ANSWER:
Again unseen material.
The Ricci scalar is,

R = R',+R,+R’,+R’
= R',+R",+2R%,

_ 2 2h(r) 2h'(r) 4h(r) ,
= 3 2 p f()( p +h(r))+2L
so that,
1 ~ 1 h(r) h'(r) 2h(r) h'(r)
2R T orrop r Fin r o |7 L
Then,
Gy = R—l R = Rt—l R = F\’t—lR (15)
t = it 2Qtt =0guh 2gtt = Oit t~ 5
where,
1 1 h(r)
Rtt—ER = _(ﬁ_r_Z) (16)
SO,
1 h(r) h(r)
— 2y . _ T\ 17
G e (r2 2 p (17)

[This question continues on the
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General Relativity May 2013 ANSWERS DRAFT February 5, 2013

And,
1 oo oo
Grr = Rrr - —erR = grrR r— —erR = On R r— =R (18)
2 2 2
where,
1 1 h(r) f'(r)h(r)
r
- —R = —|—- 1
R 2R (r-2 r2)+2 r (19)
SO,

h(r) rere r r
= % - h(:)rz + gf’(r) (20)
The Einstein equation is,
G, =81GnT, (21)
Now,
Ty = pU?+ P (Ui + gy (22)

and u; = gyut = —e?T = -0 50,

Ty = P92f(r) (23)
and,
T, = pu?+P(uu + )—i (24)
= pPU, rUr er-hm
Then the tt component of the Einstein equation is;
1 h(r) h(r
2" (ﬁ - % - ﬁ) = 871Gy (pe*") (25)
so we find,
1 h(r) K
r—2—7——=8ﬂ'GNp (26)
And for the rr component,
1 2 P
= - —f'(r) = 87Gn| — 27
2 " hpe Tt =8r N(h(r)) 27)

[This question continues on the
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SO,
1 h(r) 2h(r),,
—r—2+7+7f(r)=87[GNP (28)
Now if,
h(r)=1 - 2";“) (29)
then,
son . 2m'(r)  2m(r)
h'(r) = Tt (30)
Substituting into the tt component,
1 h(r) h(r)
rGwe = T T
1 1 2m(r) 1( 2m'(r) 2m(r)
= - - e B +
r2r2 r r r r2
2m'(r
= r2( ) (31)
Hence we obtain the required result,
m'(r) = 4nGp!(r) (32)
Substituting into the rr component,
1 h(r) 2h(r),,
87TGNP = —r—2+7+ p f(r)
1 1 2m(r)\ 2, 2m(r)
= ——+=|1- (|1 -
r2+r2( r )+r (r)( r
2m(r) 2, 2m(r)
= 5 +7f(r)(1— p (33)
Hence,
2
2m(r) + 87Gnr*P = 2r2f’(r)(1 - ”:(r)) (34)
and so we obtain the required result,
m(r) + 4nGnrP
f'(r) = 35
") r2 —2m(r)r (39)

Probable mark assignment: 3 marks for method, 1 for Einstein equations, 4
for accuracy

[8 marks]

[This question continues on the
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PT4.2

(iv) If the star has a surface at r = R, then outside this surface for r > R there is no

fluid matter ie. p = P = 0. Solve the equations to find m(r) and show e2/") = h(r)
is a solution. Hence determine the metric in the star’s exterior. What is this
exterior spacetime? What is its mass in terms of m(r)?

ANSWER:
Again unseen material.
So forr > R we have p = P = 0, and so,

m(r)
'nN=0, f(r)s————" 36
m'(r) (= mmr (36)
Firstly then m(r) is constant, say m(r) = M. Then,
M M 1 1 h'(r)
f(r)=s ——=[+— = — 7
") r2 —2Mr (+r2)1_¥ 2 h(r) (37)
S0,
k e2') = h(r) (38)
for some constant k. Hence €2 = h(r) is a solution. Then the metric is,
1
2 2 2 2 2 P2 2
ds®> = —h(r)dt? + mc/r + 12 (d6? + sin® 0dg?)
2M 1 .
= — (1 - T) dt2 + mdrz +r? (d02 + Sln2 9d¢2) (39)

r

which is Schwarzschild - see Qu A1 - with mass M. Note that since m’(r) = 0
for r > R, and then M = m(r), then at r = R we must have M = m(R).

Probable mark assignment: 2 for method, 1 for accuracy, 2 for interpretation

[5 marks]

[Total 30 marks]

ANSWERS 14 Please go to the next page
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3. This question concerns scalar fields and FLRW spacetime.

PT4.2

(i)

Consider a scalar field ¢(t, x') with potential V(¢) on a general spacetime. lts
stress tensor is given as,

y
T,uv = ﬂ¢vv¢ - Eg,uv (Va(ﬁva(p) — Ow V(¢) (1)
Using the equation of motion of this scalar field,

av
V'V, = —dg”) 2)

show that the stress energy is conserved.

ANSWER:

The stress tensor for a scalar field was not discussed in lectures, so this is new
material.

Consider,

VHT,

uv

1
V (V,0V48) = 59 V" (V79Vat +2V(9))
(V2O)V,8) + (V*V,0)(Vi8) = G (V*V9)(Vod) = G V' V(9)  (3)
Now recall that V,V,¢ = V,V,4, so,

Vi = (V2)(V.e) + (V“vab)( V) = (VV,9)(Vagp) — 9, V(9)

(V2)(V.9) = 9, V(¢9)

dVv(¢) o¢
(V29)(V,9) — Tdb x

2, dV(¢)
(V.9) (V ¢ - d—qS)
0

due to scalar equation of motion.

Probable mark assignment: 2 for method, 1 for product rule (in expanding
VET,,), 2 for chain rule (in writing 6,V = dV/d¢d¢/0x"), 3 for accuracy.

[8 marks]
Take spacetime to be FLRW, with coordinates x* = (t, x') with i = 1,2, 3, and,
ds? = —dt? + a(t)5;dx’ dx’ (5)
Compute all the Christoffel symbol components I, for this metric.

[This question continues on the
ANSWERS 15 next page ...]
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ANSWER:

An example sheet question covered computing Christoffel components for
FLRW, so conscientious students will have done this exercise before.

We use,
(04 1 Q)
r w = Eg P (aygv,B + avg,uﬁ - a,Bg/-lV) =0 (6)
to compute the components;
rttt! rtit=rtti1 I_tij=rtji’ r]itzr]ti’ rljk (7)
The inverse metric is,
o1
gt=-1, ¢'=2d (8)
with other components zero.
Firstly,
1
r = EQ” (0191t + 0191t — 0:91) = 0 9)
Then,
1
r it = EQH (0ign + 0:9it — 0:9i) = 0 (10)
Then,
rll . = 1gn (ag + ag -0 g) = _19”8 gii
if ) iYjt jYit tYij > tYij
1
= 51 (a(ts)
= d;ada (11)
Then,
i 1 ik 1.1 ik
My = 59 (ajgtk + 0t Qjk — 5kg/t) = E(?6 )(3tgjk)
11 5
= 5?5’ at (a 5][()
1 .
= Eé’kéjkaé‘ta
1 .
= ga;ata (12)
Finally,
Moo lgm (0igim + 01Gim — Omgy) = 0 (13)
jk ) iYjm jiYim mYij

[This question continues on the
PT4.2 ANSWERS 16 next page ...]
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PT4.2

(i)

Probable mark assignment: 1 for inverse metric, 4 marks for method, 3 for
accuracy

[8 marks]

Take the scalar to have the symmetries of FLRW, so that ¢ is only a function of

time t. Also take its potential to vanish,V(¢) = 0 - this is a massless scalar field.

Solve the massless scalar equation of motion to show that,
1

a<t1)3

t
o(t) = p(t) =k | dtf

fo

(14)
where k is a constant of integration.

ANSWER:
This calculation is not covered in lectures or example sheets.
If V = 0 then the scalar equation of motion is,

0=V = ¢g"V,d,¢=g" (0,0,6 + T ,0.0) (15)
Now if ¢ = ¢(t), then,

0 = ¢ (3,008 —T",,000)
= §"0:0i¢ - ¢'T" 010 (16)
and using the fact that " , = 0 and g" = 0 then,
0 = -0 —9'T" j0up
1
= 0% - ?6” (6,-,-aata) 01
3
= 07 - ~0ad (17)
where we use 6§76 = 3. Then,
01(0:9) da
e _ 322 18
B 3 (18)
and so,
1
0 =K_3 (19)

for some constant k, so integrating from a time f,,

1
a(t/)S

t
o(t) = () + k f o

fo

(20)

as required.
Probable mark assignment: 4 marks for method, 1 for 675 = 3, 3 for accuracy

[8 marks]

[This question continues on the
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(iv) A comoving perfect fluid with equation of state P = wp, for constant w, obeys,

c

a ey

p(t) =

in FLRW where c is a constant. Show the stress tensor for the massless scalar
in FLRW is the same as that for a perfect fluid with w = +1 (a ’stiff fluid’). Find
the relation between the constants ¢ and k.

ANSWER:
This calculation is not covered in lectures or example sheets.

The velocity of a perfect fluid at rest in FLRW is v* = (1,0, 0, 0) for our metric
(so v#v, = —1). Then,

T, =@+ P)vv, +Pg, (22)
so if P = wp then,
Te=p(1+wW)viv;+wWpgy =p(1+W)—-wp=p (23)
and,
Ti=p(1+w)wvv; + wpgy =0 (24)
and,
Tj=p(1+w) vy + wpg; = a°wpd; (25)

For the massless scalar field we have,

T = 0,000~ 30w (V'6V,0)
= V0V~ 500" 007
= ViV + 5Gul00) 26)
SO,
Tu = 00 + 5009 = (09 - 3(00) = 5 (00) @7)
and,
Ty = VigVip + 5009’ = 0 28)
and,
Ty = VigVio + 50100 = 50,0107 29)

[This question continues on the
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so we see that the massless scalar has the same stress tensor as the fluid if,

1 1
5(6@)2 =p, Eaza,-,-(atab)z = a°wpd;

which implies that w = 1 and,

! 1 c
t - t b k dt, 3 t =
o0 =t =k [ ot s )= o
so that,
01p(t) = k 1
t¢ - a(t)3
Then,
1 k? 1
= —(0,0)° = —
and this equals,
c
p a(t)3(1+w)
provided we have w = 1, and then,
k2
¢=7

(30)

(31)

(32)

(36)

Probable mark assignment: 3 marks for method, 1 for stress tensor of fluid, 2

for accuracy

[6 marks]

[Total 30 marks]
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4. Before Einstein completed his equations of General Relativity, an alternative theory
was proposed by Nordstrom. As with Einstein’s theory, in Nordstrém’s theory grav-
ity is due to curvature of spacetime. However, the theory is much simpler as the
spacetime metric cannot be general, but is given in terms of one function ¢(t, x'), as,

ds? = ¢? (—dt2 + dx’dx’) (1)

where we have taken coordinates x* = (t, x') with i = 1,2, 3. Particle motion is then
just as for GR but in this particular curved spacetime.

(i) A massive particle in the spacetime follows the timelike geodesic x* =
(T(r), X'(1)) where T is its proper time. Assume the Nordstém scalar ¢ is time
independent, so ¢ = ¢(x'). Use the Euler-Lagrange equations to vary the La-

grangian,
dT\?  dX' dX’
_ 2 N i “a
L_de¢ (X)( (d’r) * dr dT) @)
with respect to X' and hence determine that the geodesic is governed by,
PX 100 .
dr2 — ¢® X
ANSWER:
Nordstéms theory was not covered in lectures or example sheets so this is new
material.
So,
dT\?  dX' dX’
-— — 2 — —_— —_—
L—deL—degb(X)( (CIT) + o dr) (4)
Note that since 7 is proper time we have,
dT\?>  dX'dx’
— 2 i il B
£_¢(X)[ (dT) +dT d‘r] 1 ©)
Vary with respect to X; then,
d( oL 0L
dr (a—_] = ox (©)
S0,
d ,dX A@(X)?) ( (dT\® dXidX
—|+2¢"— | = —(—|-|—| + ——
ar dr oX' ar dr dr
29 (X)) 00X
ar\ dr oXi
a2 X' _10¢(X)
2 _ 1
2¢ dr? 2¢ oX %

[This question continues on the
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so then,

X1 9p(X)
gz = TF X ®)

Probable mark assignment: 2 marks for method, 3 for correctly using Euler, 1
for correctly using £ = —1, 2 for accuracy.

[8 marks]
Nordstrdm proposed a field equation governing ¢ to be,
1
¢
where p is the matter energy density and « is a constant. Consider a Newtonian
limit similar to that in GR by taking ¢ = 1 + e® and time independent with € < 1.

Use your answer to part i) to identify the Newtonian gravitational potential and
hence determine the constant « in terms of Newton’s constant Gy.

(-0% + %) ¢ = xp (9)

ANSWER:

Nordstéms theory was not covered in lectures or example sheets so this is new
material.

We may expand the geodesic equation we derived in € so that,

X AW 1o
dr2 — ¢® aXT (1 +ed+..)20X e
0P
= —Gw+... (10)

to lowest order in €. Hence to identify with Newtonian motion then e® must be
the usual Newtonian potential, where,

670,0;(e®d) = 4nGnp (11)

Probable mark assignment so far: 2 mark for method, 1 for accuracy. 2
marks for identifying Newtonian potential.

We may expand Nordstrom’s field equation,

1
(1+ed+..)°
1

= ———————F (D + ...
(1+ed+..)° b

- (D) + .. (12)

(-2 +02)(1+ e +..)

Kp %(—6?+6,2)¢=
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to lowest order, and hence we see that for this to be compatible with Newton’s
equation above we require,

4nGy = K (13)

Probable mark assignment: 1 mark for method, 1 for accuracy. 1 mark for
getting constant «.

[8 marks]

Like GR, Nordstrédm’s theory predicts a gravitational redshift. Suppose a particle
is at fixed position x| and emits radiation with frequency w in its rest-frame. At
what frequency does a particle at fixed position x; receive it, assuming that ¢ is
time independent? Consider this redshift in the Newtonian limit - can it be used
to distinguish Einstein’s GR from Nordstrom’s theory?

ANSWER:

Nordstém’s theory was not covered in lectures or example sheets; however
clearly the calculation is close to the GR Newtonian redshift calculation which
was covered in detail in lectures and example sheets.

The emitter particle has 4-velocity,
1

o= 14
iy = Gy ©:0:0) (14)
and the receiver has 4-velocity,
1
Ho_ 1
Vi = (5552000 (15)

2 _ 2
so that vj;, = v, =

receiver 7o. Then,

—1. Let the emitter have particle proper time 7, and the

a _ o1 a1
dry o = P(x1) " dro = Ve T P(X2) (10)
so that,
dro  ¢(xo)
2l _ 17
dri = d(x) )

So the observed frequency wgyps is related to the emitted frequency w as,

Wops dry ¢(X1 )
w drp P(X2) (18)

In the Newtonian limit this gives,

Wobs é(x1) - 1+ 6¢(X1)

w  d)  1+edD(x) =1 +e(P(xq) - P(x2)) + ... (19)

[This question continues on the
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and since e® is the Newtonian potential @y, then,

“’;‘”s — 1+ Oyix) — Pr(x) + ... (20)

which is exactly the usual GR result. So the gravitational redshift predicted by
Nordstrom’s theory is the same as that for GR.

Probable mark assignment: 1 mark for the correct 4-velocities, 1 mark for
identifying the relation between coordinate time and the two proper times, 1
mark for method and 1 for accuracy for computing the frequency redshift. 1
mark for method and 1 for accuracy in taking the e — 0 limit and 2 for the
comparison with GR.

[8 marks]

Assuming ¢ is time independent, perform the T variation of the Lagrangian in
part i) to give a conserved quantity for the motion. Show how this conserved
quantity can be written in terms of the particle’s 4-velocity and an appropriate
Killing vector K¥ which you should determine.

ANSWER:
This is similar to some discussion in lectures and example sheet questions in
different contexts (such as Schwarzschild and Newtonian spacetime).
Vary the Lagrangian with respect to T; then,
d (0L 0L
— === 21
da (a%) aT 1)

but since @ is independent of time 5% = 0, then £

dr

is constant, and so,

=2 =c (22)

for a constant c.
The appropriate Killing vector is K* = (1,0, 0, 0) as this vector field generates
the time translation symmetry of the metric (and hence is Killing). Then,

aTr
K,uvﬂ = g,quﬂKv = gttvt = _¢2E (23)

which proportional to the conserved quantity above, so,

1
K,V = §C (24)

[This question continues on the
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Probable mark assignment: 2 marks for method and 1 for accuracy of
variation. 1 for method, 1 for Killing vector and 1 for accuracy in showing the
conserved quantity is proportional to v¥K,.

[6 marks]

[Total 30 marks]
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5. This question concerns light bending in the Newtonian spacetime. Recall the Newto-
nian metric is,

ds? = g, dx“dx”, with g, =1, — 2e®(x') 5, + O(€*?)

where x# = (t, x') with i = 1,2, 3 and we assume 6;® = 0 so the spacetime is static.
When € < 1 this is the Newtonian limit of GR with e® being the Newtonian gravita-
tional potential.

(i) Parameterize a null geodesic in the Newtonian spacetime as x*#(1) =
(T(A), X'(2)) with affine parameter 1. By varying

ax* dx”
dig,,— 1
f G di di M

with respect to X' show that for a null geodesic,

X 2 D dX' dXxk s P dx* dx!
diz Xk d1 da “oxi da di

to leading order in e.

ANSWER:

Light bending in Newtonian spacetime was covered in an example sheet ques-
tion but specifically for a point mass, so the result here for general @ is unseen
material. In addition the null geodesic was obtained in the example sheet di-
rectly from the geodesic equation, not by action variation.

Begin with the Lagrangian,
dx* dx”
Jarr= [ oG G
; dx” dx”
i YA
f da (my — 26D(X) 8,1y + O(€*/2)) a1

. i gx)
f da (-1 - 2eP(X') + (3/2))31‘;; (1 - 2ed(X) + (3/2))5,,%0'

L

Now for a null ray £ = 0, and hence,

. dT dT . dx’ dx/
i TN Wi _ i 3/2 T
(1+2eB(X) + O(e”?) = = (1 = 2eB(X) + O(*)) 55— =0 (4)
SO,
ar 2 [1-2ed(X) + O(%?) “dx' dx!
di) = \1+2ed(X)+ O(32)) " dA da
dx’ dx/

5,155 + O(E) (5)

[This question continues on the
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Consider the X' Euler-Lagrange equation. Then,

d(_oL )\ _ 9d(54_ 3/2y) 5. X
d/l(a(dX"/d/l)) - d/l(2(1 2e0(X) + () 9y d/l)
= 25, 0X 4 900, X

g2 " an Tda
X ad(X) . dXI axk

_ ) _ gAuA 3/2
= 20—y — 46 i Oy + OE€) (6)
and
9L 0D | o a2y (AT AT - dX™ X"
axi = 2y O g O an
0P 302 aT dT axmdx”
= (e * O i dn O
L) 32 dX™ dx”
= (—2€W+O(e N|20mn——— i dl + O(e)
o _ dX™dX" 32
= —4¢ axémn 1 i + O(e”%) (7)
So the Euler-Lagrange equations yield,
BX aD(X) . dXi dxk ob  dXmdx" 22
2o g " oxk g ar T *axidmgr g FO€T) ®
so that,
a2Xi ad dXidX* . 9 dX™ dX” 22
gz = 2\axkardr " 9°maxigr dx) o) ©)

Probable mark assignment: 2 for general method, 1 mark for correct La-
grangian, 3 marks for Euler-Lagrange equations, 2 marks for using £ = 0, 2 for
accuracy.

[10 marks]

(ii) Take the Newtonian potential for a static point source with mass (eM) at position
"= (0, R,0). Consider a light ray initially propagating along the x' axis, so that
x* =(A4,4,0,0) for A —» —o0. The trajectory of the ray is then

X'(2) = (X(2), Y(2), Z(2) = (A + €G(A) + O(€¥?), eH() + O(¢*?),0)  (10)
Use the answer to part i) to show that,

?H acb( )
dar T ey (1)
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ANSWER:

Light bending, and in particular this result, was covered in an example sheet
question. However the derivation was different as discussed for part i).

The equation governing the trajectory is,

a?X’ o dx'dxk . 9D dX™ dX” 32
dz - *laxiarar 90maxian ax) o) (12)
and we have,
= (1 + €G(A) + O(€¥?)), eH(A) + O(€*?)), 0) (13)

Let us call x' = (x, y, z), and X' = (X, Y, 2).
Now,

dX™dX" dXdX dYdY dZdZ dX dX
™ 1~ didi T didl T didl " diaa O =106 (14

Then we have,

ﬂ = %% @ﬂd_X"_ @ _de ax” +O( 3/2)
dz = ““\axkdaidr " avy’™ di da ¢
od dY dxk  od
= Del—=2_22__ "7 3/2
(an dA da av) OE™)
(15)
but as dY/dA = O(e), then,
W = —2fw+0( ) (16)
and so as Y = eH(1) + O(e%2) then,
o?H aD(X) "
W = _2(9—Y+O(E ) (17)

as required.

Probable mark assignment: 3 for understanding how to use relevant answer
to part i), 4 marks for method in subsequent calucatlion, 3 for accuracy.

[10 marks]

By using the explicit form of the Newtonian potential for the point mass, integrate
twice to determine H(1). Hence show that light is deflected by an angle 6 which
to leading order in € is,

(18)

[This question continues on the
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Hint: You may find the following integral useful;

ax ~ X (19)
@+ x0°% @ VE1x

ANSWER:

Again light bending, and in particular this result, was covered in an example
sheet question. However the derivation was different as discussed for part i).
The Newtonian potential for the source is,

GNEM

ed(x') = - (20)
VX2+(y-R)2+22
S0,
- GyM
D(x) = - = (21)
VX2+(y-R2+22
so then,
0 ; 0 GyM
— X = —|-
oY Y X2+ (Y-R2+Z22
_ GyM(Y - R) 22)
(X2+(Y - R)2+ 22)%?
Recall that,
X=1+0(), Y=0(), Z=0 (23)
so that,
0 i -GyMR
G_Y(D(X) m + O(e) (24)
Then,
d’H 2GyMR
iE - 1 R + O(e) (25)
Using
ax X
f R = RevRE e (20
then,
dH da
— = 2GW\MR | ———
da Gin f @+ R "0
A
= Cc+2GyMR————— + O(¢)
" ReVRZ4 2

B F1’2+/12+O(€
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where c is a constant of integration. We require H - 0as 4 — —co so dH/dA —
0 too, and since,

2GyM 2GyM
iim (o + 25 A _ o 26w (28)
A——00 R +VRZzi 22 R
then we have,
2GyM
= 2
= (29)
S0,
dH 2GyM A
i 1
a1 B ( + =T /12) + O(e) (30)
Integrate once more,
H = ZGNMfd/l( )+O(€)
VR2 + 22
2GyM ( 21dA )
= A+ = O(e
R VRZ + 12
2GyM
- G,g (d+2+ VRZ+ 22) + O(e)
(31)
for a constant of integration d. Now since,
2GyM 2GyM
iim (25N (d+1+ VRZ+ 22)| = GvMd (32)
-\ R R
and we wish H — 0 we require d = 0. So finally,
2GyM
H = G}g (1+ VRZ+.22) + O(e) (33)
For A — +c0 we have,
4GyM
oo dGM O(e) (34)
R
Then,
. Y(Q) eH 4Gn(eM) 5
| ~ ~
LX) T A+ eG R tOE) (35)
and the deflection angle 6 is,
. Y\ 4Gn(eM)
— 1 _ 2
0 =tan (JTLL (/l)) = B + O(€%) (36)
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for a point source with mass (eM).

Probable mark assignment: 3 marks for Newtonian potential, 4 for method
and 3 for accuracy in subsequent calculation.

[10 marks]

[Total 30 marks]
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