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Conventions:

We use conventions as in lectures. In particular we take (−, +, +, +) signature.

You may find the following formulae useful:

The Christoffel symbol is defined as,

Γµ αβ ≡
1
2

gµν
(
∂αgνβ + ∂βgαν − ∂νgαβ

)
The covariant derivative of a vector field is,

∇µvν ≡ ∂µvν + Γν µαvα

and for a covector field is,

∇µwν ≡ ∂µwν − Γ
α
µνwα

For a Lagrangian of a curve xµ(λ) of the form,

L =
∫

dλL(xµ,
dxµ

dλ
)

the Euler-Lagrange equations are,

d
dλ

 ∂L

∂(dxµ
dλ )

 =
∂L

∂xµ
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Section A

Answer all of section A.
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SECTION A

1. This question concerns accelerated motion in curved spacetimes.

(i) Suppose we have a massive particle following a trajectory xµ(τ) in a general
spacetime, where τ is the particle’s proper time. The particle’s 4-velocity vµ is
defined as vµ = dxµ/dτ. Why is vµvµ = −1?

ANSWER:
Testing material given in lectures.
In an infinitesimal time dτ the spacetime interval will be,

ds2 = gµνdxµdxν = gµν
dxµ

dτ
dxν

dτ
dτ2 (1)

Now proper time for a particle is defined to be ds2 = −dτ2 and so,

−1 = gµν
dxµ

dτ
dxν

dτ
= gµνvµvν (2)

Probable mark assignment: 4 for method, 1 for accuracy.
[5 marks]

(ii) Use the chain rule property of derivatives to show that the 4-velocity transforms
as a vector.

ANSWER:
Testing material seen in lectures.
Under a coordinate transform, so that x ′µ

′

= x ′µ
′

(xν), then using the chain rule,

v ′µ
′

=
dx ′µ

′

dτ
=
∂x ′µ

′

∂xµ
dxµ

dτ
=
∂x ′µ

′

∂xµ
vµ (3)

and hence this does indeed transform as a vector.

Probable mark assignment: 2 for knowing vector transformation, 2 for chain
rule, 2 for general method, 1 for accuracy.

[7 marks]

(iii) The 4-acceleration aµ is defined as aµ = vν∇νvµ. Show that in Minkowski space-
time this can be written as aµ = d2xµ/dτ2.

ANSWER:
Testing material given in lectures.
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In Minkowski spacetime Γα µν = 0 and so,

aµ = vν∇νvµ = vν∂νvµ =
dxν

dτ
∂vµ

∂xν
=

dvµ

dτ
=

d2xµ

dτ2
(4)

Probable mark assignment: 2 for general method, 2 for Γ = 0 in Minkowski, 1
for chain rule, 1 for accuracy.

[6 marks]

(iv) By considering vν∇ν
(
vµvµ

)
, show that aµ and vµ are orthogonal 4-vectors (ie.

aµvµ = 0).

ANSWER:
Testing material discussed in lectures and example sheets, although not in this
exact format.
Start with vµvµ = −1. Then act with vν∂ν to obtain,

0 = vν∂ν
(
vµvµ

)
= vν∇ν

(
vµvµ

)
= 2vµvν∇νvµ = 2vµaµ (5)

Probable mark assignment: 1 for general method, 1 for understanding ∇ is ∂
on a scalar, 2 for understanding vν∂ν(v2) = 0, 2 for product rule, 1 for accuracy.

[7 marks]

(v) Show that since aµvµ = 0 then aµ must be a spacelike vector.

ANSWER:
Material discussed in lectures and example sheets.
Go to the instantaneous local inertial frame of the particle, so that at some point
p on its trajectory then vµ = (1, 0, 0, 0) and gµν = ηµν at that point. Then since
aµvµ = 0 then, a t = 0, so that,

aµ = (0, a i) (6)

for 3-vector a i, and so,

gµνaµaν = δija ia j = (a1)2 + (a2)2 + (a3)2 ≥ 0 (7)

at the point p. Note that if gµνaµaν = 0 then aµ = 0 and the acceleration vanishes.
So for non-vanishing acceleration gµνaµaν > 0 at p and so aµ is spacelike there.
But we could have chosen p to be any point on the trajectory, and hence aµ

must always be spacelike.
Probable mark assignment: 2 for method, 2 for correct use of local inertial
frame, 1 for accuracy

[5 marks]
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(vi) Now consider a particle moving in the Schwarzschild spacetime, with coordi-
nates xµ = (t , r , θ, φ) and metric,

ds2 = −
(
1 −

2M
r

)
dt2 +

(
1 −

2M
r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
(8)

Consider a particle accelerating to stay at constant spatial position, so that r , θ, φ
remain constant. Use the fact that,

Γr
tt =

M
r2

(
1 −

2M
r

)
, Γt

tt = Γθ tt = Γφ tt = 0 (9)

to calculate the norm
√

aµaµ of the 4-acceleration of the particle for r > 2M.
What happens to this quantity at r = 2M and why?

ANSWER:
Part of this has featured in an example sheet question, but not in the same
format, so this will be unfamiliar to the great majority of students.
The 4-velocity is vµ = (f , 0, 0, 0) for some function f since the particle is kept at
fixed position in space. Then since gµνvµvν = −1 then,

−

(
1 −

2M
r

)
f2 = −1 (10)

so that,

f =
1√

1 − 2M
r

(11)

The 4-acceleration is,

aµ = vν∇νvµ = vν∂νvµ + vνvαΓµ να = v t∂tvµ + v tv tΓµ tt = f2Γµ tt =
1

1 − 2M
r

Γµ tt (12)

Using the Christoffel components given in the question we have, a t = aθ = aφ =
0 and,

ar =
1

1 − 2M
r

Γr
tt =

1
1 − 2M

r

M
r2

(
1 −

2M
r

)
=

M
r2

(13)

Then the norm,

aµaµ = grr (ar )2 =
1

1 − 2M
r

M2

r4
(14)

PT4.2 ANSWERS 6
[This question continues on the

next page . . . ]



General Relativity May 2013 ANSWERS DRAFT February 5, 2013

so that, √
aµaµ =

1√
1 − 2M

r

M
r2

(15)

This is indeed spacelike (ie. > 0) for r > 2M and diverges,
√

aµaµ → ∞ at
r = 2M. This is the horizon of the black hole, and an infinite acceleration is
required to keep a timelike particle sitting at the horizon.
Probable mark assignment: 2 for method, 2 for correctly getting velocity, 4 for
correctly computing acceleration and norm, 2 for interpretation

[10 marks]

[Total 40 marks]
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Section B

Answer 2 out of the 4 questions in the following section.
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SECTION B

2. This question concerns the Einstein equations for a star made of perfect fluid.

(i) State the stress tensor Tµν for a perfect fluid in terms of the fluid energy density
ρ, pressure P and 4-velocity uµ (recall uµuµ = −1). Take nµ to be orthogonal to
uµ and consider nµ∇νTµν to derive one of the fluid equations,

nµ
(
∂µP + (ρ + P) uν∇νuµ

)
= 0 (1)

ANSWER:
Perfect fluid equations were discussed in lectures and example sheets, but not
in this exact way.
The stress tensor is;

Tµν = ρuµuν + P
(
uµuν + gµν

)
(2)

Conservation is;

0 = ∇µTµν = (∇µρ)uµuν + ρ
(
uµ∇µuν + uν∇µuµ

)
+(∇µP)

(
uµuν + gµν

)
+ P

(
uµ∇µuν + uν∇µuµ

)
(3)

where we recall ∇µgµν = 0. Then contracting with nν and using nνuν = 0 gives,

0 = uν∇µTµν = ρ
(
nνuµ∇µuν

)
+ (∇µP)

(
nνgµν

)
+ P

(
nνuµ∇µuν

)
= nν(∇µP) + nν (ρ + P)

(
uµ∇µuν

)
(4)

and ∇µP = ∂µP as it is a scalar, and hence this gives the result.

Probable mark assignment: 3 for stress tensor, 3 for method, 2 for accuracy

[8 marks]

(ii) Consider a time independent, spherically symmetric metric describing a star.
We take coordinates xµ = (t , r , θ, φ) and a metric,

ds2 = −e2f (r)dt2 +
1

h(r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
(5)

where f (r) and h(r) are functions of r . The star is made of perfect fluid. Since
it is static then uµ = (T (r), 0, 0, 0). Firstly determine the function T (r). Then
using part i) above, choose nµ = (0, 1, 0, 0) and compute the necessary Γα µν
components to show that,

dP
dr

= − (ρ + P)
df
dr

(6)

PT4.2 ANSWERS 9
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ANSWER:
The stellar metric was not covered in lectures or example sheets, so this is
unseen material.
Now since gµνuµuν = −1 we have,

−1 = gµνuµuν = gttutut = −e2f (r)T2 (7)

and so,

T = e−f (r) (8)

Consider the equation from part i) with nµ = (0, 1, 0, 0), then,

0 = nµ
(
∂µP + (ρ + P) uν∇νuµ

)
= ∂rP + (ρ + P) uν∇νur

= ∂rP + (ρ + P)
(
uν∂νur + Γα νru

νuα
)

= ∂rP + (ρ + P)
(
ut∂tur + Γt

tru
tut

)
= ∂rP + (ρ + P) Γt

trgttutut

= ∂rP + (ρ + P) Γt
tre

2f (r)T2

= ∂rP + (ρ + P) Γt
tr (9)

Now we require Γt
tr ;

Γt
tr =

1
2

gtν (∂tgrν + ∂rgtν − ∂νgtr )

=
1
2

gtt (∂tgrt + ∂rgtt − ∂tgtr )

=
1
2

gtt∂rgtt

=
1
2

e−2f (r)∂re2f (r)

= ∂r f (10)

and then,

0 = ∂rP + (ρ + P) Γt
tr

= ∂rP + (ρ + P) ∂r f (11)

as required.

Probable mark assignment: 2 marks for getting T, 4 marks for overall method,
3 for accuracy

[9 marks]
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(iii) The non-zero components of Ricci with one index up and one down are,

R t
t = −

2h
r

df
dr
−

1
2

dh
dr

df
dr

+ L (r) , R r
r = −

1
r

dh
dr
−

1
2

dh
dr

df
dr

+ L (r)

Rθ
θ = Rφ

φ =
1
r2

(1 − h) −
1
2r

dh
dr
−

h
r

df
dr

(12)

where L (r) is a function of f and h you will not need to know explicitly.
Calculate the Einstein tensor components, Gtt and Grr , and then the correspond-
ing tt and rr components of the Einstein equations. Define,

h(r) = 1 −
2m(r)

r
(13)

and then show these Einstein equations yield,

dm
dr

= 4πGNr2ρ ,
df
dr

=
m + 4πGNr3P

r2 − 2mr
(14)

[ These are the Tolman-Oppenheimer-Volkoff equations for a relativistic star. ]

ANSWER:
Again unseen material.
The Ricci scalar is,

R = R t
t + R r

r + Rθ
θ + Rφ

φ

= R t
t + R r

r + 2Rθ
θ

=
2
r2
−

2h(r)
r2
−

2h′(r)
r
− f ′(r)

(
4h(r)

r
+ h′(r)

)
+ 2L

so that,

1
2

R =
1
r2
−

h(r)
r2
−

h′(r)
r
− f ′(r)

(
2h(r)

r
+

h′(r)
2

)
+ L

Then,

Gtt = Rtt −
1
2

gttR = gttR t
t −

1
2

gttR = gtt

(
R t

t −
1
2

R
)

(15)

where,

R t
t −

1
2

R = −

(
1
r2
−

h(r)
r2

)
(16)

so,

Gtt = e2f (r)

(
1
r2
−

h(r)
r2
−

h′(r)
r

)
(17)

PT4.2 ANSWERS 11
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And,

Grr = Rrr −
1
2

grrR = grrR r
r −

1
2

grrR = grr

(
R r

r −
1
2

R
)

(18)

where,

R r
r −

1
2

R = −

(
1
r2
−

h(r)
r2

)
+ 2

f ′(r)h(r)
r

(19)

so,

Grr =
1

h(r)

(
−

(
1
r2
−

h(r)
r2
−

h′(r)
r

)
+ 2

f ′(r)h(r)
r

)
=

1
r2
−

1
h(r)r2

+
2
r

f ′(r) (20)

The Einstein equation is,

Gµν = 8πGNTµν (21)

Now,

Ttt = ρu2
t + P (utut + gtt ) (22)

and ut = gttut = −e2f (r)T = −ef (r), so,

Ttt = ρe2f (r) (23)

and,

Trr = ρu2
r + P (urur + grr ) =

P
h(r)

(24)

Then the tt component of the Einstein equation is;

e2f (r)

(
1
r2
−

h(r)
r2
−

h′(r)
r

)
= 8πGN

(
ρe2f (r)

)
(25)

so we find,

1
r2
−

h(r)
r2
−

h′(r)
r

= 8πGNρ (26)

And for the rr component,

1
r2
−

1
h(r)r2

+
2
r

f ′(r) = 8πGN

(
P

h(r)

)
(27)
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so,

−
1
r2

+
h(r)
r2

+
2h(r)

r
f ′(r) = 8πGNP (28)

Now if,

h(r) = 1 −
2m(r)

r
(29)

then,

h′(r) = −
2m′(r)

r
+

2m(r)
r2

(30)

Substituting into the tt component,

8πGNρ =
1
r2
−

h(r)
r2
−

h′(r)
r

=
1
r2
−

1
r2

(
1 −

2m(r)
r

)
−

1
r

(
−

2m′(r)
r

+
2m(r)

r2

)
= +

2m′(r)
r2

(31)

Hence we obtain the required result,

m′(r) = 4πGNρ(r) (32)

Substituting into the rr component,

8πGNP = −
1
r2

+
h(r)
r2

+
2h(r)

r
f ′(r)

= −
1
r2

+
1
r2

(
1 −

2m(r)
r

)
+

2
r

f ′(r)
(
1 −

2m(r)
r

)
= −

2m(r)
r3

+
2
r

f ′(r)
(
1 −

2m(r)
r

)
(33)

Hence,

2m(r) + 8πGNr3P = 2r2f ′(r)
(
1 −

2m(r)
r

)
(34)

and so we obtain the required result,

f ′(r) =
m(r) + 4πGNr3P

r2 − 2m(r)r
(35)

Probable mark assignment: 3 marks for method, 1 for Einstein equations, 4
for accuracy

[8 marks]
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(iv) If the star has a surface at r = R, then outside this surface for r > R there is no
fluid matter ie. ρ = P = 0. Solve the equations to find m(r) and show e2f (r) = h(r)
is a solution. Hence determine the metric in the star’s exterior. What is this
exterior spacetime? What is its mass in terms of m(r)?

ANSWER:
Again unseen material.
So for r > R we have ρ = P = 0, and so,

m′(r) = 0 , f ′(r) =
m(r)

r2 − 2m(r)r
(36)

Firstly then m(r) is constant, say m(r) = M. Then,

f ′(r) =
M

r2 − 2Mr
=

(
+

M
r2

)
1

1 − 2M
r

=
1
2

h′(r)
h(r)

(37)

so,

k e2f (r) = h(r) (38)

for some constant k . Hence e2f (r) = h(r) is a solution. Then the metric is,

ds2 = −h(r)dt2 +
1

h(r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
= −

(
1 −

2M
r

)
dt2 +

1
1 − 2M

r

dr2 + r2
(
dθ2 + sin2 θdφ2

)
(39)

which is Schwarzschild - see Qu A1 - with mass M. Note that since m′(r) = 0
for r > R, and then M = m(r), then at r = R we must have M = m(R).
Probable mark assignment: 2 for method, 1 for accuracy, 2 for interpretation

[5 marks]

[Total 30 marks]
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3. This question concerns scalar fields and FLRW spacetime.

(i) Consider a scalar field φ(t , x i) with potential V (φ) on a general spacetime. Its
stress tensor is given as,

Tµν = ∇µφ∇νφ −
1
2

gµν (∇αφ∇αφ) − gµνV (φ) (1)

Using the equation of motion of this scalar field,

∇α∇αφ =
dV (φ)

dφ
(2)

show that the stress energy is conserved.

ANSWER:
The stress tensor for a scalar field was not discussed in lectures, so this is new
material.
Consider,

∇µTµν = ∇µ
(
∇µφ∇νφ

)
−

1
2

gµν∇µ (∇αφ∇αφ + 2V (φ))

= (∇2φ)(∇νφ) + (∇µ∇νφ)(∇µφ) − gµν(∇µ∇αφ)(∇αφ) − gµν∇µV (φ) (3)

Now recall that ∇µ∇νφ = ∇ν∇µφ, so,

∇µTµν = (∇2φ)(∇νφ) + (∇µ∇νφ)(∇µφ) − (∇α∇νφ)(∇αφ) − ∂νV (φ)
= (∇2φ)(∇νφ) − ∂νV (φ)

= (∇2φ)(∇νφ) −
dV (φ)

dφ
∂φ

∂xν

= (∇νφ)
(
∇2φ −

dV (φ)
dφ

)
= 0 (4)

due to scalar equation of motion.

Probable mark assignment: 2 for method, 1 for product rule (in expanding
∇µTµν), 2 for chain rule (in writing ∂νV = dV/dφ∂φ/∂xν), 3 for accuracy.

[8 marks]

(ii) Take spacetime to be FLRW, with coordinates xµ = (t , x i) with i = 1, 2, 3, and,

ds2 = −dt2 + a(t)2δijdx idx j (5)

Compute all the Christoffel symbol components Γα µν for this metric.

PT4.2 ANSWERS 15
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ANSWER:
An example sheet question covered computing Christoffel components for
FLRW, so conscientious students will have done this exercise before.
We use,

Γα µν =
1
2

gαβ
(
∂µgνβ + ∂νgµβ − ∂βgµν

)
= 0 (6)

to compute the components;

Γt
tt , Γt

it = Γt
ti , Γt

ij = Γt
ji , Γj

it = Γj
ti , Γi

jk (7)

The inverse metric is,

gtt = −1 , gij =
1
a2
δij (8)

with other components zero.
Firstly,

Γt
tt =

1
2

gtt (∂tgtt + ∂tgtt − ∂tgtt ) = 0 (9)

Then,

Γt
it =

1
2

gtt (∂igtt + ∂tgit − ∂tgit ) = 0 (10)

Then,

Γt
ij =

1
2

gtt
(
∂igjt + ∂jgit − ∂tgij

)
= −

1
2

gtt∂tgij

= −
1
2

(−1)∂t

(
a(t)2δij

)
= δija∂ta (11)

Then,

Γi
jt =

1
2

gik
(
∂jgtk + ∂tgjk − ∂k gjt

)
=

1
2

(
1
a2
δik )

(
∂tgjk

)
=

1
2

1
a2
δik∂t

(
a2δjk

)
=

1
a2
δikδjka∂ta

=
1
a
δi

j∂ta (12)

Finally,

Γi
jk =

1
2

gim
(
∂igjm + ∂jgim − ∂mgij

)
= 0 (13)
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Probable mark assignment: 1 for inverse metric, 4 marks for method, 3 for
accuracy

[8 marks]

(iii) Take the scalar to have the symmetries of FLRW, so that φ is only a function of
time t . Also take its potential to vanish,V (φ) = 0 - this is a massless scalar field.
Solve the massless scalar equation of motion to show that,

φ(t) − φ(t0) = k
∫ t

t0
dt ′

1
a(t ′)3

(14)

where k is a constant of integration.

ANSWER:
This calculation is not covered in lectures or example sheets.
If V = 0 then the scalar equation of motion is,

0 = ∇2φ = gµν∇µ∂νφ = gµν
(
∂µ∂νφ + Γα µν∂αφ

)
(15)

Now if φ = φ(t), then,

0 = gµν
(
∂µ∂νφ − Γ

α
µν∂αφ

)
= gtt∂t∂tφ − gµνΓt

µν∂tφ (16)

and using the fact that Γt
tt = 0 and gti = 0 then,

0 = −∂t∂tφ − gijΓt
ij∂tφ

= −∂2
t φ −

1
a2
δij

(
δija∂ta

)
∂tφ

= −∂2
t φ −

3
a
∂ta∂tφ (17)

where we use δijδij = 3. Then,

∂t (∂tφ)
∂tφ

= −3
∂ta
a

(18)

and so,

∂tφ = k
1
a3

(19)

for some constant k , so integrating from a time t0,

φ(t) = φ(t0) + k
∫ t

t0
dt ′

1
a(t ′)3

(20)

as required.
Probable mark assignment: 4 marks for method, 1 for δijδij = 3, 3 for accuracy

[8 marks]
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(iv) A comoving perfect fluid with equation of state P = wρ, for constant w, obeys,

ρ(t) =
c

a(t)3(1+w)
(21)

in FLRW where c is a constant. Show the stress tensor for the massless scalar
in FLRW is the same as that for a perfect fluid with w = +1 (a ’stiff fluid’). Find
the relation between the constants c and k .

ANSWER:
This calculation is not covered in lectures or example sheets.
The velocity of a perfect fluid at rest in FLRW is vµ = (1, 0, 0, 0) for our metric
(so vµvµ = −1). Then,

Tµν = (ρ + P) vµvν + Pgµν (22)

so if P = wρ then,

Ttt = ρ (1 + w) vtvt + wρgtt = ρ (1 + w) − wρ = ρ (23)

and,

Tti = ρ (1 + w) vtvi + wρgti = 0 (24)

and,

Tij = ρ (1 + w) vivj + wρgij = a2wρδij (25)

For the massless scalar field we have,

Tµν = ∂µφ∂νφ −
1
2

gµν (∇αφ∇αφ)

= ∇µφ∇νφ −
1
2

gµνgtt (∂tφ)2

= ∇µφ∇νφ +
1
2

gµν(∂tφ)2 (26)

so,

Ttt = (∂tφ)2 +
1
2

gtt (∂tφ)2 = (∂tφ)2 −
1
2

(∂tφ)2 =
1
2

(∂tφ)2 (27)

and,

Tti = ∇tφ∇iφ +
1
2

gti(∂tφ)2 = 0 (28)

and,

Tij = ∇iφ∇jφ +
1
2

gij(∂tφ)2 =
1
2

a2δij(∂tφ)2 (29)
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so we see that the massless scalar has the same stress tensor as the fluid if,

1
2

(∂tφ)2 = ρ ,
1
2

a2δij(∂tφ)2 = a2wρδij (30)

which implies that w = 1 and,

1
2

(∂tφ)2 = ρ (31)

Let us check this. Recall,

φ(t) − φ(t0) = k
∫ t

t0
dt ′

1
a(t ′)3

, ρ(t) =
c

a(t)3(1+w)
(32)

so that,

∂tφ(t) = k
1

a(t)3
(33)

Then,

ρ =
1
2

(∂tφ)2 =
k 2

2
1

a(t)6
(34)

and this equals,

ρ =
c

a(t)3(1+w)
(35)

provided we have w = 1, and then,

c =
k 2

2
(36)

Probable mark assignment: 3 marks for method, 1 for stress tensor of fluid, 2
for accuracy

[6 marks]

[Total 30 marks]
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4. Before Einstein completed his equations of General Relativity, an alternative theory
was proposed by Nordström. As with Einstein’s theory, in Nordström’s theory grav-
ity is due to curvature of spacetime. However, the theory is much simpler as the
spacetime metric cannot be general, but is given in terms of one function φ(t , x i), as,

ds2 = φ2
(
−dt2 + dx idx i

)
(1)

where we have taken coordinates xµ = (t , x i) with i = 1, 2, 3. Particle motion is then
just as for GR but in this particular curved spacetime.

(i) A massive particle in the spacetime follows the timelike geodesic xµ =
(T (τ), X i(τ)) where τ is its proper time. Assume the Nordstöm scalar φ is time
independent, so φ = φ(x i). Use the Euler-Lagrange equations to vary the La-
grangian,

L =
∫

dτ φ2(X )
− (

dT
dτ

)2

+
dX i

dτ
dX i

dτ

 (2)

with respect to X i and hence determine that the geodesic is governed by,

d2X i

dτ2
= −

1
φ3

∂φ(X )
∂X i

(3)

ANSWER:
Nordstöms theory was not covered in lectures or example sheets so this is new
material.
So,

L =
∫

dτL =
∫

dτ φ2(X )
− (

dT
dτ

)2

+
dX i

dτ
dX i

dτ

 (4)

Note that since τ is proper time we have,

L = φ2(X )
− (

dT
dτ

)2

+
dX i

dτ
dX i

dτ

 = −1 (5)

Vary with respect to X ; then,

d
dτ

 ∂L
∂dX i

dτ

 =
∂L

∂X i
(6)

so,

d
dτ

(
+2φ2 dX i

dτ

)
=

∂(φ(X )2)
∂X i

− (
dT
dτ

)2

+
dX i

dτ
dX i

dτ


2φ2 d

dτ

(
dX i

dτ

)
= −φ−2∂(φ(X )2)

∂X i

2φ2 d2X i

dτ2
= −2φ−1∂φ(X )

∂X i
(7)
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so then,

d2X i

dτ2
= −

1
φ3

∂φ(X )
∂X i

(8)

Probable mark assignment: 2 marks for method, 3 for correctly using Euler, 1
for correctly using L = −1, 2 for accuracy.

[8 marks]

(ii) Nordström proposed a field equation governing φ to be,

1
φ3

(
−∂2

t + ∂2
i

)
φ = κ ρ (9)

where ρ is the matter energy density and κ is a constant. Consider a Newtonian
limit similar to that in GR by taking φ = 1 + εΦ and time independent with ε � 1.
Use your answer to part i) to identify the Newtonian gravitational potential and
hence determine the constant κ in terms of Newton’s constant GN.

ANSWER:
Nordstöms theory was not covered in lectures or example sheets so this is new
material.
We may expand the geodesic equation we derived in ε so that,

d2X i

dτ2
= −

1
φ3

∂φ(X )
∂X i

= −
1

(1 + εΦ + ...)3

∂

∂X i
(1 + εΦ + ...)

= −ε
∂Φ

∂X i
+ ... (10)

to lowest order in ε. Hence to identify with Newtonian motion then εΦ must be
the usual Newtonian potential, where,

δij∂i∂j(εΦ) = 4πGNρ (11)

Probable mark assignment so far: 2 mark for method, 1 for accuracy. 2
marks for identifying Newtonian potential.

We may expand Nordström’s field equation,

κ ρ =
1
φ3

(
−∂2

t + ∂2
i

)
φ =

1

(1 + εΦ + ...)3

(
−∂2

t + ∂2
i

)
(1 + εΦ + ...)

=
1

(1 + εΦ + ...)3∂
2
i (εΦ + ...)

= ∂2
i (εΦ) + ... (12)
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to lowest order, and hence we see that for this to be compatible with Newton’s
equation above we require,

4πGN = κ (13)

Probable mark assignment: 1 mark for method, 1 for accuracy. 1 mark for
getting constant κ.

[8 marks]

(iii) Like GR, Nordström’s theory predicts a gravitational redshift. Suppose a particle
is at fixed position x i

1 and emits radiation with frequency ω in its rest-frame. At
what frequency does a particle at fixed position x i

2 receive it, assuming that φ is
time independent? Consider this redshift in the Newtonian limit - can it be used
to distinguish Einstein’s GR from Nordström’s theory?

ANSWER:
Nordstöm’s theory was not covered in lectures or example sheets; however
clearly the calculation is close to the GR Newtonian redshift calculation which
was covered in detail in lectures and example sheets.
The emitter particle has 4-velocity,

vµ(1) = (
1

φ(x1)
, 0, 0, 0) (14)

and the receiver has 4-velocity,

vµ(2) = (
1

φ(x2)
, 0, 0, 0) (15)

so that v2
(1) = v2

(2) = −1. Let the emitter have particle proper time τ1 and the
receiver τ2. Then,

dt
dτ1

= v t
(1) =

1
φ(x1)

,
dt

dτ2
= v t

(2) =
1

φ(x2)
(16)

so that,

dτ2

dτ1
=
φ(x2)
φ(x1)

(17)

So the observed frequency ωobs is related to the emitted frequency ω as,

ωobs

ω
=

dτ1

dτ2
=
φ(x1)
φ(x2)

(18)

In the Newtonian limit this gives,

ωobs

ω
=
φ(x1)
φ(x2)

'
1 + εΦ(x1)
1 + εΦ(x2)

' 1 + ε (Φ(x1) −Φ(x2)) + ... (19)

PT4.2 ANSWERS 22
[This question continues on the

next page . . . ]



General Relativity May 2013 ANSWERS DRAFT February 5, 2013

and since εΦ is the Newtonian potential ΦN, then,

ωobs

ω
= 1 +ΦN(x1) −ΦN(x2) + ... (20)

which is exactly the usual GR result. So the gravitational redshift predicted by
Nordström’s theory is the same as that for GR.

Probable mark assignment: 1 mark for the correct 4-velocities, 1 mark for
identifying the relation between coordinate time and the two proper times, 1
mark for method and 1 for accuracy for computing the frequency redshift. 1
mark for method and 1 for accuracy in taking the ε → 0 limit and 2 for the
comparison with GR.

[8 marks]

(iv) Assuming φ is time independent, perform the T variation of the Lagrangian in
part i) to give a conserved quantity for the motion. Show how this conserved
quantity can be written in terms of the particle’s 4-velocity and an appropriate
Killing vector K µ which you should determine.

ANSWER:
This is similar to some discussion in lectures and example sheet questions in
different contexts (such as Schwarzschild and Newtonian spacetime).
Vary the Lagrangian with respect to T ; then,

d
dλ

 ∂L
∂dT

dτ

 =
∂L

∂T
(21)

but since Φ is independent of time ∂L
∂T = 0, then ∂L

∂ dT
dτ

is constant, and so,

∂L

∂dT
dτ

= −2φ2 dT
dτ

= c (22)

for a constant c.
The appropriate Killing vector is K µ = (1, 0, 0, 0) as this vector field generates
the time translation symmetry of the metric (and hence is Killing). Then,

Kµvµ = gµνvµK ν = gttv t = −φ2 dT
dτ

(23)

which proportional to the conserved quantity above, so,

Kµvµ =
1
2

c (24)
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Probable mark assignment: 2 marks for method and 1 for accuracy of
variation. 1 for method, 1 for Killing vector and 1 for accuracy in showing the
conserved quantity is proportional to vµKµ.

[6 marks]

[Total 30 marks]
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5. This question concerns light bending in the Newtonian spacetime. Recall the Newto-
nian metric is,

ds2 = gµνdxµdxν , with gµν = ηµν − 2εΦ(x i) δµν + O(ε3/2)

where xµ = (t , x i) with i = 1, 2, 3 and we assume ∂tΦ = 0 so the spacetime is static.
When ε � 1 this is the Newtonian limit of GR with εΦ being the Newtonian gravita-
tional potential.

(i) Parameterize a null geodesic in the Newtonian spacetime as xµ(λ) =
(T (λ), X i(λ)) with affine parameter λ. By varying

L =
∫

dλgµν
dxµ

dλ
dxν

dλ
(1)

with respect to X i show that for a null geodesic,

d2X i

dλ2
= 2ε

(
∂Φ

∂X k

dX i

dλ
dX k

dλ
− δijδkl

∂Φ

∂X j

dX k

dλ
dX l

dλ

)
(2)

to leading order in ε.

ANSWER:
Light bending in Newtonian spacetime was covered in an example sheet ques-
tion but specifically for a point mass, so the result here for general Φ is unseen
material. In addition the null geodesic was obtained in the example sheet di-
rectly from the geodesic equation, not by action variation.
Begin with the Lagrangian,

L =
∫

dλL =
∫

dλgµν
dxµ

dλ
dxν

dλ

=
∫

dλ
(
ηµν − 2εΦ(X i) δµν + O(ε3/2)

) dxν

dλ
dxν

dλ

=
∫

dλ
(
−1 − 2εΦ(X i) + O(ε3/2)

) dT
dλ

dT
dλ

+
(
1 − 2εΦ(X i) + O(ε3/2)

)
δij

dX i

dλ
dX j

dλ
(3)

Now for a null ray L = 0, and hence,(
1 + 2εΦ(X i) + O(ε3/2)

) dT
dλ

dT
dλ
−

(
1 − 2εΦ(X i) + O(ε3/2)

)
δij

dx i

dλ
dx j

dλ
= 0 (4)

so, (
dT
dλ

)2

=
(
1 − 2εΦ(X i) + O(ε3/2)
1 + 2εΦ(X i) + O(ε3/2)

)
δij

dx i

dλ
dx j

dλ

= δij
dx i

dλ
dx j

dλ
+ O(ε) (5)
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Consider the X i Euler-Lagrange equation. Then,

d
dλ

(
∂L

∂(dX i/dλ)

)
=

d
dλ

(
2
(
1 − 2εΦ(X ) + O(ε3/2)

)
δij

dX j

dλ

)
= 2δij

d2X j

dλ2
− 4ε

dΦ(X )
dλ

δij
dX j

dλ
+ O(ε3/2)

= 2δij
d2X j

dλ2
− 4ε

∂Φ(X )
∂X k

δij
dX j

dλ
dX k

dλ
+ O(ε3/2) (6)

and

∂L

∂X i
= (−2ε

∂Φ

∂X i
+ O(ε3/2))

(
dT
dλ

dT
dλ

+ δmn
dXm

dλ
dXn

dλ

)
= (−2ε

∂Φ

∂X i
+ O(ε3/2))

(
dT
dλ

dT
dλ

+ δmn
dXm

dλ
dXn

dλ

)
= (−2ε

∂Φ

∂X i
+ O(ε3/2))

(
2δmn

dXm

dλ
dXn

dλ
+ O(ε)

)
= −4ε

∂Φ

∂X i
δmn

dXm

dλ
dXn

dλ
+ O(ε3/2) (7)

So the Euler-Lagrange equations yield,

2δij
d2X j

dλ2
− 4ε

∂Φ(X )
∂X k

δij
dX j

dλ
dX k

dλ
= −4ε

∂Φ

∂X i
δmn

dXm

dλ
dXn

dλ
+ O(ε3/2) (8)

so that,

d2X j

dλ2
= 2ε

(
∂Φ

∂X k

dX j

dλ
dX k

dλ
− δjiδmn

∂Φ

∂X i

dXm

dλ
dXn

dλ

)
+ O(ε3/2) (9)

Probable mark assignment: 2 for general method, 1 mark for correct La-
grangian, 3 marks for Euler-Lagrange equations, 2 marks for using L = 0, 2 for
accuracy.

[10 marks]

(ii) Take the Newtonian potential for a static point source with mass (εM) at position
x i = (0, R, 0). Consider a light ray initially propagating along the x1 axis, so that
xµ = (λ, λ, 0, 0) for λ→ −∞. The trajectory of the ray is then

X i(λ) = (X (λ), Y (λ), Z(λ)) =
(
λ + εG(λ) + O(ε3/2), εH(λ) + O(ε3/2), 0

)
(10)

Use the answer to part i) to show that,

d2H
dλ2

= −2
∂Φ(X i)
∂Y

(11)
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ANSWER:
Light bending, and in particular this result, was covered in an example sheet
question. However the derivation was different as discussed for part i).
The equation governing the trajectory is,

d2X i

dλ2
= 2ε

(
∂Φ

∂X k

dX i

dλ
dX k

dλ
− δijδmn

∂Φ

∂X j

dXm

dλ
dXn

dλ

)
+ O(ε3/2) (12)

and we have,

x i = (λ + εG(λ) + O(ε3/2)), εH(λ) + O(ε3/2)), 0) (13)

Let us call x i = (x, y, z), and X i = (X , Y , Z).
Now,

δmn
dXm

dλ
dXn

dλ
=

dX
dλ

dX
dλ

+
dY
dλ

dY
dλ

+
dZ
dλ

dZ
dλ

=
dX
dλ

dX
dλ

+ O(ε) = 1 + O(ε) (14)

Then we have,

d2Y
dλ2

= 2ε
(
∂Φ

∂X k

dY
dλ

dX k

dλ
−
∂Φ

∂Y
δmn

dXm

dλ
dXn

dλ

)
+ O(ε3/2)

= 2ε
(
∂Φ

∂X k

dY
dλ

dX k

dλ
−
∂Φ

∂Y

)
+ O(ε3/2)

(15)

but as dY/dλ = O(ε), then,

d2Y
dλ2

= −2ε
∂Φ

∂Y
+ O(ε3/2) (16)

and so as Y = εH(λ) + O(ε3/2) then,

d2H
dλ2

= −2
∂Φ(X )
∂Y

+ O(ε1/2) (17)

as required.
Probable mark assignment: 3 for understanding how to use relevant answer
to part i), 4 marks for method in subsequent calucatlion, 3 for accuracy.

[10 marks]

(iii) By using the explicit form of the Newtonian potential for the point mass, integrate
twice to determine H(λ). Hence show that light is deflected by an angle θ which
to leading order in ε is,

θ =
4GN(εM)

R
(18)

PT4.2 ANSWERS 27
[This question continues on the

next page . . . ]



General Relativity May 2013 ANSWERS DRAFT February 5, 2013

Hint: You may find the following integral useful;∫
dx

(a2 + x2)3/2 =
x

a2
√

a2 + x2
(19)

ANSWER:
Again light bending, and in particular this result, was covered in an example
sheet question. However the derivation was different as discussed for part i).
The Newtonian potential for the source is,

εΦ(x i) = −
GNεM√

x2 + (y − R)2 + z2
(20)

so,

Φ(x i) = −
GNM√

x2 + (y − R)2 + z2
(21)

so then,

∂

∂Y
Φ(X i) =

∂

∂Y

− GNM√
X2 + (Y − R)2 + Z2


=

GNM(Y − R)

(X2 + (Y − R)2 + Z2)3/2 (22)

Recall that,

X = λ + O(ε) , Y = O(ε) , Z = 0 (23)

so that,

∂

∂Y
Φ(X i) =

−GNMR

(λ2 + R2)3/2 + O(ε) (24)

Then,

d2H
dλ2

=
2GNMR

(λ2 + R2)3/2 + O(ε) (25)

Using ∫
dλ

dx
(R2 + x2)3/2

=
x

R2
√

R2 + x2
(26)

then,

dH
dλ

= 2GNMR
∫

dλ

(λ2 + R2)3/2 + O(ε)

= c + 2GNMR
λ

R2
√

R2 + λ2
+ O(ε)

= c +
2GNM

R
λ

√
R2 + λ2

+ O(ε) (27)
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where c is a constant of integration. We require H → 0 as λ→ −∞ so dH/dλ→
0 too, and since,

lim
λ→−∞

(
c +

2GNM
R

λ
√

R2 + λ2

)
= c −

2GNM
R

(28)

then we have,

c =
2GNM

R
(29)

so,

dH
dλ

=
2GNM

R

(
1 +

λ
√

R2 + λ2

)
+ O(ε) (30)

Integrate once more,

H =
2GNM

R

∫
dλ

(
1 +

λ
√

R2 + λ2

)
+ O(ε)

=
2GNM

R

(
λ +

1
2

∫
2λdλ
√

R2 + λ2

)
+ O(ε)

=
2GNM

R

(
d + λ +

√
R2 + λ2

)
+ O(ε)

(31)

for a constant of integration d. Now since,

lim
λ→−∞

(
2GNM

R

(
d + λ +

√
R2 + λ2

))
=

2GNMd
R

(32)

and we wish H → 0 we require d = 0. So finally,

H =
2GNM

R

(
λ +
√

R2 + λ2
)

+ O(ε) (33)

For λ→ +∞ we have,

H ∼
4GNM

R
λ + O(ε) (34)

Then,

lim
λ→∞

Y (λ)
X (λ)

∼
εH

λ + εG
∼

4GN(εM)
R

+ O(ε2) (35)

and the deflection angle θ is,

θ = tan−1

(
lim
λ→∞

Y (λ)
X (λ)

)
=

4GN(εM)
R

+ O(ε2) (36)
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for a point source with mass (εM).
Probable mark assignment: 3 marks for Newtonian potential, 4 for method
and 3 for accuracy in subsequent calculation.

[10 marks]

[Total 30 marks]

PT4.2 ANSWERS 30 Please go to the next page


